
Using Jason and MOISE+ to Develop a
Team of Cowboys

Jomi F. Hübner†, Rafael H. Bordini?, and Gauthier Picard†

†École des Mines de Saint-Étienne, France ?University of Durham, UK
{hubner,picard}@emse.fr r.bordini@durham.ac.uk

1 Introduction

This paper gives an overview of a multi-agent system forming a team of “cowboys”
to compete in the Multi-Agent Programming Contest 2008 (the ‘Cows and Herders’
scenario). In the two previous contests, we tested and improved Jason [2], an agent
platform based on an extension of an agent-oriented programming language called
AgentSpeak(L) [5]. The language is inspired by the BDI architecture, thus based on no-
tions such as goals, plans, beliefs, intentions, etc. The participation in previous contests
also increased our experience both in using BDI concepts as well as in programming
agents with Jason specifically. In the 2006 contest, the focus was on the definition of
agent’s plans [1], leading to rather reactive agents. In the 2007 contest, the focus was
on (declarative) goals [3], leading to more pro-active, goal-directed agents.

For the 2008 contest, we were motivated to continue improving the multi-agent pro-
gramming abstractions, now towards social or organisational agents, using the concepts
such as roles and groups. The system is therefore developed in two dimensions: agents
(using declarative goals) and organisation (using groups, roles, and shared goals). Among
several organisational models available, we will use theMOISE+ model because it is
well integrated with Jason [4]. Our objective in participating in this contest was thus
twofold: (i) to continue to test and improve Jason and its integration withMOISE+;
(ii) evaluate the use of organisational constructs in the development of the team.

2 System Analysis and Design

It is clear, from the description of the scenario, the importance of cowboys working as a
coordinated team. It would be very difficult for a cowboy alone to herd a group of cows.
We therefore adopted a strategy strongly tied to the notion of group of agents where
issues such as spatial formation, membership, and coordination would be emphasised.

The organisational structure of the team is specified in Fig. 1 using theMOISE+ no-
tation. Our team has two types of subgroups: one to explore the environment searching
for cows (the exploration group) and another one that leads the herd towards the corral
(the herding group). The team always has three instances of the exploration group, each
one responsible for some part of the scenario. The agents enter and leave these groups
as the result of their decision to start or stop searching cows. The herding groups are
dynamically created as the agents decide to herd a cluster of cows. The number of those
groups and the agents that belong to them depend on the size and location of found
clusters of cows. The following roles can be played by agents in the respective groups:

explorer

leader

cowboy

3..3

1..2

acquaintance

authority

communication

compatibility

intra-group

Legend

min..max
composition:

inheritance:

role

Abs Role

inter-grouplinks

group

team

0..6

scouter herdboy

herder
0..1 0..3

1..1
1..1

exploration herding

Fig. 1. The Structural Specification of the Organisation.

– explorer: explores the environment until it detects a cow;
– scouter: follows the explorer;
– herder: herds the cows detected by explorers until they reach the corral;
– herdboy: helps the herder to lead cows to the corral.

The roles leader and cowboy are abstract and used to specify common properties of
their sub-roles. For example, leaders have authority over others cowboys.

The general dynamics of the agents playing the above roles is described with the
help of the following scenario. (1-start) At the beginning of the simulation, three explo-
ration groups are created with two agents in each group, on playing the explorer and
the other the scouter role. Agents split themselves up so as to cover as wide a range as
possible, without necessarily keeping each other in sight. (2-herd) As soon as an agent
perceives cows, it informs the members of its exploration group. The explorer of the
group creates a new herding group and then changes its role to herder. The scouter also
changes its role to herdboy in the new group. After the new group is created, a cluster
of cows is assigned to it based on the cows already seen by the agents. The leader then
defines the group formation so that the cows are led to the corral. (3-merge) If two herd-
ing groups are too near, they are ‘merged’: one group remains and the other is removed
from the organisation. All agents of the removed group change their roles to herdboy in
the remaining group. (4-dissolve) Once the corral is reached and the cluster is empty,
the herding group is dissolved and the agents create exploration groups returning to the
first step (1-start). Table 1 briefly presents the goals that agents are obligated to achieve
when playing each of the roles. An agent that adopts the role scouter, for instance, is
obligated to achieve the goals share seen cows and follow leader.

Although we have some global constraints over the agents’ behaviour (based on
the roles they are playing), they are autonomous to decide how to achieve the goals
assigned to them. While coordination and team work are managed by the MOISE+

tools, the autonomy and pro-activeness are facilitated by the BDI architecture of our
agents implemented in Jason. Regarding communication (required, for example, for the
share seen cows goal), we use speech-act based communication available in Jason.

Table 1. The Organisational (Maintenance) Goals assigned to Roles.

Role Goal Goal Description

explorer find scouter find a free agent nearby to play scouter and help in the exploration
change to herding check if it is best to change to a herding group
goto near unvisited go to the nearest unvisited location within the group’s area

scouter share seen cows share information about cows with other agents in the group
follow leader follow the leader of the group (an explorer)

herder recruit recruit more herdboys depending on the size of the cluster
release boys whenever the group has too many herdboys, release some
define formation compute the ideal location of each member of the group
be in formation go to the place allocated to the agent in the formation
change to exploring check if it is best to change to an exploring group

herdboy share seen cows share information about cows with other agents in the group
be in formation go to the place allocated to the agent in the formation

3 Software Architecture

To implement our agent team, two features of Jason were specially useful: architecture
customisation and internal actions. A customisation of the agent architecture is used to
interface between the agent and its environment. The environment for the Agent Contest
is implemented in a remote server that simulates the cattle field, sending perception
to the agents and receiving requests for action execution. Therefore, when an agent
attempts to perceive the environment, the customised architecture sends to the agent
the information provided by the server, and when the agent chooses an action to be
performed, the architecture sends the action execution request to the server.

Although most of the agent code was written in AgentSpeak, some parts were im-
plemented in Java, either because we used legacy code or Java was more appropriate
for the task. In particular, we already had a Java implementation of the A* search algo-
rithm, which we used to find paths and calculate distances in the various scenarios of
the competition. Also, the computation of the formation of the herding groups requires
a lot of vector operations, so best done in Java. These algorithms ware made accessible
to the agents by means of internal actions.

The organisational interaction is also made available to the agents by means of a
custom architecture and internal actions. This architecture produces events when: (1)
something has changed in the state of the organisation (e.g., a new group was created);
and (2) when the agent has some new obligation based on the roles it is playing. These
events may then lead to the creation of intentions to handle them. For example, when
some agent adopts the role herder in a herding group, achievement goal events are
produced for all obligatory goals of this role (Table 1). An AgentSpeak plan pattern as
follows was used to program suitable reactions to those events:

+!define_formation[group(G),role(R)] // plan to handle a goal addition
<- ... <the code> ...

.wait("+pos(X,Y,Cycle)"); // wait for the next cycle
!define_formation[group(G),role(R)]. // achieve that same goal again

Note that organisational goals here are maintenance goals: for example, at every sim-
ulation cycle the target group formation should be (re)defined. These goals are also
annotated with the group and the role that triggered the obligation. This allows us

to code interesting plans such as “-group(Type,GroupId) <- .drop_inten
tion(_[group(GroupId)]).”, i.e., whenever a group is removed (e.g., a herding
group), all the intentions that originated from that group are dropped.

Fig. 2. Team formation in a contest sce-
nario. Cows are yellow and obstacles are
black. Green squares inside red circles are
target locations for the agents (blue). The
arrow indicates the direction of the corral.

The agents’ code is essentially a set
of plans to achieve such organisational
goals. In many cases, these plans have to
decide whether to change the organisa-
tion. For example, the goal recruit may
trigger a merging of two herding groups;
the actions of this plan are roughly: de-
stroy one group and ask their members
to change their roles (Algorithm 1). By
changing the roles, new goals are auto-
matically defined for the agents. To sum
up, decisions are taken at the organisa-
tional level (groups/roles), the goals and
intentions are a consequence.

The overall performance of the team
is, however, also dependent on lower
level algorithms. The most important are:
(i) A* to find good paths; (ii) the defini-
tion of the cluster of cows for a herding
group — the cluster should be the largest
the agents can herd (see Algorithm 2); and (iii) the definition of the agent formation so
that the cows are led to the corral (Fig. 2 illustrated the result1 of our algorithm).

4 Discussion

The AgentSpeak code for the team is, in our opinion, quite an elegant solution, being
declarative, goal-based (or BDI-based), and adequately integrated with an organisa-
tional mode. In this paper, we have emphasised the modelling and programming of the
team by means of organisational concepts, specially groups and roles. Agents’ goals
originate from the obligations attached to their roles. This allows us to maintain high
abstraction level and good coding style. In some cases, to change the team behaviour
we simply changed the organisational specification that was followed by our cowboys.
The Jason interpreter provided good support for high-level communication, transpar-
ent integration with the contest server, use of existing Java code, and integration of
organisational programming throughMOISE+. As in previous contests, the experience
helped us to improve several issues of Jason,MOISE+, and their integration.

We had three main difficulties in developing of our team. The first was the lack
of an analytical tool to model the organisational dynamics regarding both the changes

1 Note that cows stuck to clusters which were difficult to move in the competition simulation
(cows behaved differently from the initial scenario description). Thus, even though the forma-
tion seems efficient, the best strategy to herd large clusters of cows was to herd them separately.

plan merge(gi) // gi is the herding group of the agent using this plan

forall herding group gj such that gi > gj do
let Si be the set of cows of gi’s cluster
let Sj be the set of cows of gj ’s cluster
if Si ∩ Sj 6= ∅ then

remove group gj from the organisation
ask all agents of gj to adopt the role herdboy in gi

Algorithm 1: Group merging. The leaders of herding groups check a possible merg-
ing with all other herding groups that have a smaller ID number.

function cluster(V , m) ; // V is the set of all seen cows in the group
// m is the maximum number of cows in the cluster

C ← { the cow in V nearest to the corral } ; // C is the resulting cluster
repeat

add← false
forall v ∈ V do

if some cow in C sees v then
move v from V to C
add← true

until ¬add ∨ |C| ≥ m

Algorithm 2: Cluster function. The leaders of herding groups use this function to
compute the current cluster of the group.

of agent’s roles and the life-cycle of groups. Although theMOISE+ specification lan-
guage is used at runtime to constrain the dynamics of the organisation (e.g., by the
cardinality of roles), it does not help the agents to make decisions about when and
what exactly to change. The second problem was the lack of suitable tools to debug the
team. Even with the Jason mind inspector, communication sniffers, and organisational
GUIs, finding bugs take most of the development time. Due to its high abstraction level,
BDI and organisational programming require new kinds of debugging tools. These two
issue will be the subject of our future work. The third difficulty was due to the vari-
ous problem-dependent parameters (e.g., perception range, repulsion force, cluster size,
herding group size) that influenced the collective behaviour, differing from one scenario
to another. This led us to long tuning activities to obtain adequate behaviors, without
any automatic learning phase. Such an exploration of the parameter space may be an
interesting challenge, but hardly generalisable and outside of our interests.

References

1. R. H. Bordini, J. F. Hübner, and D. M. Tralamazza. Using Jason to implement a team of gold
miners. In Proc. of the 7th CLIMA, v 4371 of LNCS, pages 304–313. Springer, 2007.

2. R. H. Bordini, J. F. Hübner, and M. Wooldrige. Programming Multi-Agent Systems in AgentS-
peak using Jason. John Wiley & Sons, 2007.

3. J. F. Hübner and R. H. Bordini. Developing a team of gold miners using Jason. In Proc. of
the 5th ProMAS, v 4908 of LNAI, pages 241–245. Springer, 2008.

4. J. F. Hübner, J. S. Sichman, and O. Boissier. Developing organised multi-agent systems using
the MOISE+ model: Programming issues at the system and agent levels. Int. J.Agent-Oriented
Software Engineering, 1(3/4):370–395, 2007.

5. A. S. Rao. AgentSpeak(L): BDI agents speak out in a logical computable language. In Proc.
of the 7th MAAMAW, v 1038 of LNAI, pages 42–55, London, 1996. Springer.

