# From cognitive trust theories to computational trust

#### Jomi F. Hübner<sup>1</sup>, Emiliano Lorini<sup>2</sup>, Laurent Vercouter<sup>1</sup>, and Andreas Herzig<sup>2</sup>

<sup>1</sup>ENS Mines Saint Etienne, France {hubner,vercouter}@emse.fr

<sup>2</sup>IRIT, Toulouse, France {lorini,herzig}@irit.fr

Trust Workshop @ AAMAS 2009, Budapest



# Outline

#### - Evaluate a cognitive definition of trust in ART scenario -

#### ART Testbed

- Scenario
- Agent Architecture
- Trust
  - Definition of Castelfranchi & Falcone
  - Formalisation
  - Application on ART
- 3 Agent Proposal
  - Inference
  - Implementation



Bob is asked to appraise a painting, but he is not allowed to do it himself









Bob will ask Alice and Carol for an opinion about the painting, he trusts them













Trust@AAMAS 09 From cognitive trust theories to computational trust

Next Cycle start The number of new clients for Bob depends on the quality of his evaluations in the previous cycle



# General Agent Architecture





Scenario Agent Architecture

# Example of Perception begin of cycle

painting(e, p, t)

• the painting *p* of era *e* is allocated to the agent at the current step *t* of the simulation Bob is asked to appraise a painting, but he is not allowed to do it himself





#### e.g. *painting*(*e*1, *p*2345, 5)



# Example of Action ask opinion



Scenario Agent Architecture

# Example of Action evaluate a painting



# Example of Perception

## $opinion(j, e, v_g, v_r, t)$

 opinion produced by partner *j* for a painting of era *e*; the real value of the painting is *v<sub>r</sub>* and the opinion provided by agent *j* is *v<sub>q</sub>*



opinion(alice, e1, 11000, 7500, 5) opinion(carol, e1, 8000, 7500, 5)

# How to select partners to ask opinions?



# Trust definition: Castelfranchi & Falcone

#### Trust has four components

- a truster *i*
- a trustee j
- an action  $\alpha$  of j
- and a goal  $\varphi$  of i
- "*i* trusts *j* to do  $\alpha$  in order to achieve  $\varphi$ "

#### Trust's primitive ingredients

- *i* has the **goal**  $\varphi$
- *i* believes that *j* is
   capable to do α
- *i* believes that *j* intends to do α
- *i* believes that *j* has the **power** to achieve φ by doing α



# Trust definition: Castelfranchi & Falcone

#### Trust has four components

- a truster *i*
- a trustee j
- an action  $\alpha$  of j
- and a goal  $\varphi$  of i
- "*i* trusts *j* to do  $\alpha$  in order to achieve  $\varphi$ "

#### Trust's primitive ingredients

- *i* has the **goal**  $\varphi$
- *i* believes that *j* is
   capable to do α
- *i* believes that *j* intends to do α
- *i* believes that *j* has the **power** to achieve φ by doing α



# Formalisation (ForTrust Project)

#### Definition (Occurrent Trust)

 $OccTrust(i, j, \alpha, \varphi) \stackrel{\text{def}}{=}$ 

 $Goal(i, \varphi) \land$   $Believes(i, OccCap(j, \alpha)) \land$   $Believes(i, OccIntends(j, \alpha)) \land$  $Believes(i, OccPower(j, \alpha, \varphi))$ 



# Formalisation (ForTrust Project)

#### Definition (Occurrent Trust)

 $OccTrust(i, j, \alpha, \varphi) \stackrel{\text{def}}{=}$ 

 $Goal(i, \varphi) \land$  $Believes(i, OccCap(j, \alpha)) \land$  $Believes(i, OccIntends(j, \alpha)) \land$  $Believes(i, OccPower(j, \alpha, \varphi))$ 

Definition (Occurrent Trust — Dynamic Logic)

 $OccTrust(i, j, \alpha, \varphi) = Pref_i Eventually \varphi \land$  $Bel_i Does_{j:\alpha} \top \land$  $Bel_i After_{i:\alpha} \varphi$ 

> Ecole Nationale Supérieure des Mines

# Formalisation (ForTrust Project)

Definition (Occurrent Trust — revised)

 $OccTrust(i, j, \alpha, \varphi) \stackrel{\text{def}}{=}$ 

 $Goal(i, \varphi) \land$   $Believes(i, OccAct(j, \alpha)) \land$  $Believes(i, OccPower(j, \alpha, \varphi))$ 

Definition (Occurrent Trust — Dynamic Logic)

 $OccTrust(i, j, \alpha, \varphi) = Pref_i Eventually \varphi \land$  $Bel_i Does_{j:\alpha} \top \land$  $Bel_i After_{j:\alpha} \varphi$ 

> LECOLE Nationale Supérieure des Mines

# 'Instantiation' of trust for ART testbed

- Actions: appraise a painting
  - All agents are capable to appraise, but with different expertise
- Goal: has good evaluations for the clients' painting
  - An agent cannot appraise its own painting, it have to ask opinions from others (which are also competitors)



# 'Instantiation' of trust for ART testbed

- Actions: appraise a painting
  - All agents are capable to appraise, but with different expertise
- Goal: has good evaluations for the clients' painting
  - An agent cannot appraise its own painting, it have to ask opinions from others (which are also competitors)

#### Definition (Trust in ART)

 $\begin{array}{ll} OccTrust(i, j, appraise(p), good\_eval(p)) \\ \stackrel{\texttt{def}}{=} & Goal(i, good\_eval(p)) \land \\ & Believes(i, OccAct(j, appraise(p))) \land \\ & Believes(i, OccPower(j, appraise(p), good\_eval(p))) \end{array}$ 

tionale es Mines ENNE

# 'Instantiation' of trust for ART testbed

- Actions: appraise a painting
  - All agents are capable to appraise, but with different expertise
- Goal: has good evaluations for the clients' painting
  - An agent cannot appraise its own painting, it have to ask opinions from others (which are also competitors)

#### Definition (Trust in ART — with strength)

 $\begin{array}{ll} OccTrust(i, j, appraise(p), good_eval(p), min(x, y)) \\ \stackrel{\text{def}}{=} & Goal(i, good_eval(p)) \land \\ & Believes(i, OccAct(j, appraise(p)), x) \land \\ & Believes(i, OccPower(j, appraise(p), good_eval(p)), y) \end{array}$ 

tionale es Mines ENNE

# Inference of ingredients I



The verify whether *Goal(i, good\_eval(p))* holds the agent simply consult its belief base



# Inference of ingredients II

$$\begin{aligned} & \text{DccTrust}(i, j, appraise(p), good_eval(p), min(x, y)) \\ &= & \text{Goal}(i, good_eval(p)) \land \\ & & \text{Believes}(i, \text{OccAct}(j, appraise(p)), x) \land \\ & & \text{Believes}(i, \text{OccPower}(j, appraise(p), evaluate(p)), y) \end{aligned}$$

$$\begin{array}{l} \textit{Believes}(i, \textit{OccAct}(j, \alpha), x) \\ \leftarrow & \textit{Believes}(i, \textit{opinions}\_\textit{count}(j, a, n), 1) \land \\ & a > 0 \land x = \frac{n}{a} \land x > \epsilon \end{array}$$

*a* is the number of opinions requested to *j*, *n* is the number of answers

$$\rightarrow j \text{ does } \alpha \text{ if he did in the past}$$

# Inference of ingredients III

 $\begin{array}{ll} OccTrust(i, j, appraise(p), good_eval(p), min(x, y)) \\ \stackrel{\text{def}}{=} & Goal(i, good_eval(p)) \land \\ & Believes(i, OccAct(j, appraise(p)), x) \land \\ & Believes(i, OccPower(j, appraise(p), good_eval(p)), y) \end{array}$ 

 $\begin{array}{l} \textit{Believes}(i,\textit{OccPower}(j,\textit{appraise}(p),\textit{good\_eval}(p)),\textit{y}) \\ \leftarrow &\textit{Believes}(i,\textit{sincere}(j),1) \land \\ &\textit{Believes}(i,\textit{painting}(e,p),1) \land \\ &\textit{y} = \textit{image}_t(j,e) \land \textit{y} > \delta \end{array}$ 



# Inference of ingredients IV

$$image_t$$
:  $AGT \times ERA \rightarrow [0, 1]$ 

$$image_t(j, e) = \begin{cases} 0.5 & \text{if } t = 0\\ image_{t-1}(j, e) & \text{if } O_t^{j, e} = \emptyset\\ \gamma r_t(j, e) + (1 - \gamma)image_{t-1}(j, e) & \text{otherwise} \end{cases}$$

$$r_t(j, e) = \frac{1}{|O_t^{j, e}|} \sum_{(v_g, v_r) \in O_t^{j, e}} 1 - \frac{|v_g - v_r|}{v_r}$$

 $O_t^{j,e}$  is the set of all opinions provided by agent j to our agent in paintings of era e and simulation step t $v_a$  is the value provided by j  $v_r$  the real value of the painting



#### Jason implementation I

```
// -- Find a partner for painting P
+!find candidate(P)
   : agents(Ags) & // consult all agents from belief base
     .findall(opt(C,Ag), // create a list of trustful candidates
          .member(J, Ags) &
         not partner(J, P) &
                                 // consult the trust of J
         trust(J, appraise(P), good_eval(P))[strength(C)],
         Candidates) &
     Candidates \== []
                               // to use this plan, there
                                // must be a candidate
   <- .max(Candidates,opt(C,J)); // get the best candidate
     +partner(J, P).
                     // add the assignment (partner)
// plan that randomly select a sincere partner
+!find candidate(P)
```

```
: random_ag(J) & not partner(J, P) & sincere(J)
```

```
<- +partner(J, P).
```

Ecole Nationale Supérieure des Mines

## Jason implementation II

```
// trust inference rule, e.g. Act=appraise(p1), Goal=good_eval(p1)
trust(J,Act,Goal)[strength(C)] :-
   .intend(Goal) &
                                        // I have the goal
   occ_act(J,Act)[strength(X)] & // J is capable and intend
   occ_power(J,Act,Goal)[strength(Y)] & // J has the power
  C = math.min(X,Y).
                                        // computes the strength of the trust
   // the strength of beliefs are represented by annotations, enclosed by [ ]
// when a painting is allocated to me, to evaluate it is a goal
+painting(Era,P) <- !good_eval(P).
// capability and intention are based on % of responses to requests
occ_act(J,appraise(P))[strength(X)] :-
   opinions_count(J,Asked,Provided) & Asked > 0 & X = Provided/Asked & X > 0.9.
// power is based on image and sincerity
occ_power(J, appraise(P), _)[strength(Y)] :-
   sincere(J) & painting(Era,P) & image(J, Era, Y) & Y > 0.5.
   // the image function is implemented as a belief where the third term is
   // the value of the image of agent J
                                                                      Ecole Nationale
Supérieure des Mines
```

#### Jason implementation III

```
// whenever I receive an opinion from J
+opinion(J, Era, GivenValue, RealValue)
   <- Error = math.abs(RealValue - GivenValue) / RealValue;
     if (Error > 10) { // huge errors means insincerity
        +~sincere(J) // add a belief that J is not sincere
     };
     N = .count(opinion(J,Era,_,_)); // number of opinions
     R = (1-Error)/N;
                      // reward for the opinion
     ?image(J, Era, Img); // consult current image
     NewImg = 0.5*Img + 0.5*R; // compute new image
     -+image(J, Era, NewImg). // update image belief
```



## ForTrust vs ForTrust



ART Testbed Trust Agent Experiments

# Partners of ForTrust-Power



ART Testbed Trust Agent Experiments

# Partners of ForTrust-Power-Action



ART Testbed Trust Agent Experiments

# ForTrust vs ART 2008 competitors



# Summary

- From C&F to Logic
- From Logic to BDI architecture
- From BDI to Jason
- The proposal is
  - implementable
  - has good performance
  - all ingredients of the definition are relevant
- Importance of certainty (to rank partners)
- Adequacy to BDI languages



# Summary

- From C&F to Logic
- From Logic to BDI architecture
- From BDI to Jason
- The proposal is
  - implementable
  - has good performance
  - all ingredients of the definition are relevant
- Importance of certainty (to rank partners)Adequacy to BDI languages



# Summary

- From C&F to Logic
- From Logic to BDI architecture
- From BDI to Jason
- The proposal is
  - implementable
  - has good performance
  - all ingredients of the definition are relevant
- Importance of certainty (to rank partners)
- Adequacy to BDI languages

