
Using Jason,M+, and CArtAgO to
Develop a Team of Cowboys

Jomi F. Hübner1, Rafael H. Bordini2, Gustavo Pacianotto Gouveia3,
Ricardo Hahn Pereira3, Gauthier Picard4, Michele Piunti5, and Jaime S. Sichman3

1 Federal University of Santa Catarina, Brazil
jomi@das.ufsc.br

2 Federal University of Rio Grande do Sul, Brazil
r.bordini@inf.ufrgs.br

3 University of São Paulo, Brazil
{jaime.sichman,ricardo.pereira1,gustavo.gouveia}@poli.usp.br

4 École des Mines de Saint-Étienne, France
picard@emse.fr

5 Università di Bologna, Italy
michele.piunti@istc.cnr.it

1 Introduction

This paper gives an overview of a multi-agent system simulating a team of cowboys
to compete in the Multi-Agent Programming Contest 2009. This edition of the con-
test uses a “Cows and Herders” scenario, similar to the 2009 contest but now extended
with fences that require cooperation an coordination to be opened. In the previous con-
tests we tested and improved Jason and its integration with other tools, in particular the
organisational platform provided by M+. Jason [2] is an interpreter for an agent-
oriented programming language that extends AgentSpeak(L) [6]. The language is in-
spired by the BDI architecture [7], therefore based on notions such as beliefs, goals,
plans, intentions, etc. M+ is an organisational framework [5] that includes: (i) a
language used to program the organisation of the MAS with concepts such as groups,
roles, missions, global goals; and (ii) a platform that provides the necessary services for
the agents to manage and operate within organisations.

The participation in the last contests has contributed to our experience both in pro-
gramming agents with Jason and in using BDI concepts. In the 2006 contest, the fo-
cus was on creating agent plans [1], which resulted in rather reactive agents. In the
2007 contest, the focus was on (declarative) goals [3], leading to more pro-active, goal-
directed agents. In the 2008 contest, the focus was on the definition of the organisation
of the MAS, leading to more social-aware agents [4]; instead of communication only
(as in previous years), roles, groups, and common goals were also considered in the last
edition of the multi-agent programming contest.

This year, we were motivated to continue to improve and evaluate the integration
of Jason with other technologies. Besides agents and organisation, we had hoped to



explorer

leader

cowboy

0..5

0..10

team

0..10

scouter herdboy

herder
0..1

1..1

1..1

exploration herding

acquaintance

authority

communication

compatibility

intra-group

Legend

min..max
composition:

inheritance:

role

Abs Role

inter-grouplinks

group

gatekeeper2

gatekeeper1

0..1
0..1

0..1

0..1

Fig. 1. The Structural Specification of the Organisation.

also use artifacts that could help the agents in shared tasks [9]. Artifacts provide mech-
anisms to externalise functions that currently are implemented as internal actions in
Jason. The system would therefore be developed in three dimensions: agents (using
declarative goals), organisation (using groups, roles, and shared goals), and artifacts
(using external, coordinating operations). Our objective in participating in this contest
was originally twofold: (i) to continue to test and improve Jason and its integration with
other tools (M+ and CArtAgO); (ii) evaluate the use of artifacts in the development
of the team. Due to lack of time, we had to drop the use of artifacts in the implemented
team for this edition of the agent contest, and have left it for future work (hopefully for
the next edition).

2 System Analysis and Design

It is clear, from the description of the scenario, the importance of cowboys working as a
coordinated team. It would be very difficult for a cowboy alone to herd a group of cows.
As in the previous edition, we adopted a strategy strongly tied to the notion of group of
agents where issues such as spatial formation, membership, and coordination would be
emphasised.

The overall analysis of the team is the same used in the previous contest, since the
scenario is very similar; we refer the reader to [4] as in the space available we can only
discuss the main additions to team developed for the last edition of the agent contest.
The organisational structure of the team is specified in Fig. 1 using theM+ notation.
Compared to the previous edition, the structural specification now has two new roles,
called gatekeeper1 and gatekeeper2. This scenario requires two agents to cooperate to
open the fence to allow their team members and cows to pass, and they also need to
coordinate their action, as discussed below.

The two new roles created are used to handle the new feature of the scenario for this
edition of the competition of fences that agents and cows need to pass through. They
are the key roles in the newM+ scheme called Pass-Fence (see Figure 2) which is



pass_fence(X,Y)

second_switch
keep_switch1(X,Y)

goto_switch1(X,Y)

wait_gatekeeper2

cross_gate goto_switch2(X,Y) wait_for_others_to_pass(L)

PassFenceSch

first_switch
keep_switch2(X,Y)

first_switch

first_switch

first_switch second_switch second_switch

Fig. 2. The Functional Specification for the Pass-Fence Scheme.

used when a group of agents need to pass through a gate with a closed fence. When an
exploring or herding group perceives a fence in their chosen path, the agents playing
these two special roles within the groups will know the goals they have to do to ensure
the group passes safe through the gate. The agent playing the gatekeeper1 role is sent
to the position where the first switch (the one on the side where the agents currently are)
can be activated. This allows the agent playing the gatekeeper2 role to go through the
gate and position itself where the second switch can be activated (i.e., on the other side
of the fence). When all agents of the group have passed through the gate, the scheme
is finished. Table 1 briefly presents the goals that agents are obliged to achieve when
playing one of the new roles (remember that we are not presenting here the part of of
our solution that was already described in [4]); the goals are part of the first switch and
second switch missions as shown in Figure 2.

There is a further complication with the fences in this scenario which is when two
groups of the team need to cross the same gate. To handle this, before creating an
instance of the pass fence scheme, the second gatekeeper will always check with all
team members (through communication) whether another group already has an active
instance of such scheme, and if so, instead of creating another instance, the second
gatekeeper will contact its counterpart in the group that is already in the process of
passing that gate. The currently acting gatekeeper will then wait for all agents in both
groups to pass through the gate and only then terminate the scheme. When the scheme

Table 1. The New Organisational Goals of the Team.

Role Goal Goal Description

gatekeeper1 goto switch1(X,Y) position itself where the switch can be activated1

wait gatekeeper2 keep on activating the first switch until the other gatekeeper has reached
its destination

pass fence once the second gatekeeper is at its position, this agent can already go and
join the rest of its group

gatekeeper2 goto switch2(X,Y) position itself where the switch at the other side of the fence can be activated
wait for other to pass this agent is the one that needs to wait until all team members, in any groups,

who wanted to pass that fence at that time, have done so



terminates, the acting second gatekeeper joins the group again, who go on to resume
whatever they were doing (either exploring or herding).

Although we have some global constraints over the agents’ behaviour (based on
the roles they are playing), they are autonomous to decide how to achieve the goals
assigned to them. While coordination and team work are managed by the M+

tools, the autonomy and pro-activeness are facilitated by the BDI architecture of our
agents implemented in Jason. Regarding communication (required, for example, for the
share seen cows goal), we use speech-act based communication available in Jason.

3 Software Architecture

We initially planned to use artifacts to encapsulate two functions in our solution: inte-
gration with the contest simulator and maintenance of a shared view of the scenario.
These were the two artifacts we wanted to implement. The first artifact would replace
the customised Jason agent architecture we used to interface our agents with the sim-
ulator. In that new version, each agent would have access to the InterfaceArtifact that
would provide, as observable properties, the current perception provided by the simu-
lator to the agent, and, as an operation, the capability to send the actions of the agent
back to the contest simulator. This artifact would also responsible for encapsulating all
network issues, like reconnection, login, failure handling, etc.

The second artifact would be the PathArtifact. The motivation for this artifact is to
have a shared representation of the scenario instead of each agent having its own rep-
resentation. In the previous contest edition, we used broadcast messages: for each seen
cow/obstacle, a message is broadcast so that all other team members can update their
representation. This is a quite expensive solution in terms of communication. With this
new artifact, for each seen cow/obstacle, an operation is triggered in the PathArtifact
to update the scenario state. This operation may be triggered either by the agents or
directly by the InterfaceArtifact. Other useful operations such as ‘find path’ would
be implemented in this artifact so that the agents do not need to internally keep a rep-
resentation of the world. The implementation and deployment of the artifacts was to be
done with the CArtAgO platform [8].

4 Agent Team Strategy

1. Navigation algorithms. As in previous teams, we use the A* algorithm to find
paths and avoid obstacles.

2. Describe the team coordination strategy (if any). The coordination is based on
shared global goals and global plans as defined inM+.

3. Does your team strategy use some distributed optimisation technique w.r.t., e.g.,
minimising distances walked by the agents? In general, no, but in future work
negotiation techniques might be used to find out good global solutions. At the indi-
vidual level, A* finds optimal paths.

4. Describe and discuss the information exchanged (and shared) in the agent team.
The more information (specially obstacles and fences) about the scenario is avail-
able for A*, the better it performs. So when an agent perceives an obstacle or a
fence, it communicates that information to all team members.



5. Describe the communication strategy in the agent team. Can you estimate the com-
munication complexity in your approach? We have not yet formally defined
the communication protocols.

6. Did your system do some background processing? By background processing we
understand some computation which happened while agents of the team were idle.
No.

7. Possibly discuss additional technical details of your system such as failure/crash
recovery and alike. We associate an “angel” to each agent; the angel checks
if the agent is blocked/crashed and then tries to solve the problem automatically.

5 Conclusion

Due to lack of time, we have not been able to implement the planned integration with
CArtAgO. This would have made some parts of the implementation of our team (e.g.,
the sharing of spatial information) more elegant. The added feature of “fences” in the
latest scenario of the agent competition lead to significant extra complexity in the sce-
nario. However, our final solution remains compact and elegant because the high-level
code at the organisational and agent levels remain essentially the same with the addition
of only two extra roles and five new goals that agents playing those roles are required
to achieve. It remains future work to implement the use of artifacts and make a thor-
ough evaluation of the overall approach combining three of the most prominent agent
development techniques.

References

1. R. H. Bordini, J. F. Hübner, and D. M. Tralamazza. Using Jason to implement a team of gold
miners. In CLIMA VII, volume 4371 of LNCS, pages 304–313. Springer, 2007.

2. R. H. Bordini, J. F. Hübner, and M. Wooldrige. Programming Multi-Agent Systems in AgentS-
peak using Jason. John Wiley & Sons, 2007.

3. J. F. Hübner and R. H. Bordini. Developing a team of gold miners using Jason. In ProMAS
07, volume 4908 of LNCS, pages 241–245. Springer, 2008.

4. J. F. Hübner, R. H. Bordini, and G. Picard. Using Jason and MOISE+ to develop a team of
cowboys. In ProMAS 08, volume 5442 of LNAI, pages 238–242. Springer, 2009.

5. J. F. Hübner, J. S. Sichman, and O. Boissier. Developing organised multi-agent systems using
the MOISE+ model: Programming issues at the system and agent levels. International Journal
of Agent-Oriented Software Engineering, 1(3/4):370–395, 2007.

6. A. S. Rao. AgentSpeak(L): BDI agents speak out in a logical computable language. In
MAAMAW’96, number 1038 in LNAI, pages 42–55, Springer, 1996.

7. A. S. Rao and M. P. Georgeff. BDI agents: from theory to practice. In ICMAS’95, pages
312–319. AAAI Pess, 1995.

8. A. Ricci, M. Viroli, and A. Omicini. CArtAgO: A framework for prototyping artifact-based
environments in MAS. In E4MAS 2006, volume 4389 of LNAI, pages 67–86. Springer, 2007.

9. M. Viroli, T. Holvoet, A. Ricci, K. Schelfthout, and F. Zambonelli. Infrastructures for the
environment of multiagent systems. Autonomous Agents and Multi-Agent Systems, 14(1):49–
60, July 2007.


