Jason and \mathcal{M} OISE⁺

Organisational Programming in the Agent Contest 2008

Jomi F. Hübner[†], Rafael H. Bordini* Gauthier Picard[†]

† ENS Mines Saint Etienne, France {hubner,picard}@emse.fr

* University of Durham, UK r.bordini@durham.ac.uk

Dagstuhl Seminar on Programming Multi-Agent Systems

Outline

Introduction Design Implementation Conclusions

context objectives

Agent Contest 2008 the Cows and Herders scenario

Objectives of our participation

- In 2006: program our agents using plans
 - .: reactive agents
- In 2007: program our agents using goals
 - .: goal directed agents
- In 2008: program our agents using organisation
 - : join agent and system levels
 - \rightarrow use **Jason** for the agents
 - \rightsquigarrow use \mathcal{M} OISE⁺ for the organisation
- Test and improve **Jason** and \mathcal{M} OISE⁺ software
- Evaluate the use of organisational constructors in the

Objectives of our participation

- In 2006: program our agents using plans
 - .: reactive agents
- In 2007: program our agents using goals
 - .: goal directed agents
- In 2008: program our agents using organisation
 - : join agent and system levels
 - \rightarrow use **Jason** for the agents
 - \rightsquigarrow use \mathcal{M} OISE⁺ for the organisation
- Test and improve **Jason** and \mathcal{M} OISE⁺ software
- Evaluate the use of organisational constructors in the development of the team

- Introduction
 - ontext
 - objectives
- 2 Design
 - specification
 - dynamics
 - goals
- 3 Implementation
 - \mathcal{M} OISE⁺
 - Jason
 - Java
 - tools
- 4 Conclusions
 - results
 - discussion

Team specification — Groups

Our agents are organised in two types of groups:

- Exploration group: find cows
- Herding group: push cows into the corral

Exploration group

- Three instances of exploration group
- Each group is allocated to an area of the scenario
- One explorer: decides where to go
- One scouter: follows explore

Exploration group

- Three instances of exploration group
- Each group is allocated to an area of the scenario
- One explorer: decides where to go
- One scouter: follows explorer

Herding group

- Created when a member of the team sees some cow
- As many instances as the number of clusters of cows
- One herder: difines the team formatic for the cluster
- scouters: be in formation
- spatial coordination

Herding group

- Created when a member of the team sees some cow
- As many instances as the number of clusters of cows
- One herder: difines the team formation for the cluster
- scouters: be in formation
- spatial coordination

Herding group

- Created when a member of the team sees some cow
- As many instances as the number of clusters of cows
- One herder: difines the team formation for the cluster
- scouters: be in formation
- spatial coordination

Start exploring

Creation of herding group

Merge two herding groups

Dissolve herding group

Functional specification — Scheme to explore

Introduction Design Implementation Conclusions specification dynamics goals

Explorer (the leader) is obligated to mission IScouter is obligated to s

Herder (the leader) is obligated to mission lHerdboy is obligated to b

Goals

Role	Goal	Goal Description
explorer	find_scouter change_to_herding goto_near_unvisited	find agent nearby to play scouter change to a herding group go to the nearest unvisited location
scouter	share_seen_cowsshare information about cowsfollow_leaderfollow the leader of the group	
herder	recruit release_boys define_formation be_in_formation merge change_to_exploring	recruit more herdboys release some herdboys compute the formation of the group go to the place allocated to the agent merge two herding groups change to an exploring group
herdboy	share_seen_cows be_in_formation	

- Introduction
 - context
 - objectives
- 2 Design
 - specification
 - dynamics
 - goals
- 3

Implementation

- \mathcal{M} OISE⁺
- Jason
- Java
- tools
- 4 Conclusions
 - results
 - discussion

. . .

Organisation Oriented Programming I

```
. . .
<group-specification id="team">
  <sub-groups>
    <group-specification id="exploration_grp"</pre>
                          min="0" max="3" >
       <roles>
          <role id="explorer" min="1" max="1"/>
          <role id="scouter" min="0" max="1"/>
       </roles>
    </group-specification>
```

Introduction Design Implementation Conclusions MOISE⁺ Jason Java tools

Organisation Oriented Programming II

Tools to run the organisation:

- S-MOISE⁺: organisational infrastructure
 - manage the state of the organisation
- \mathcal{J} - \mathcal{M} OISE⁺: integration with **Jason**
 - library of organisational actions
 - organisational architecture

Organisation Oriented Programming III

- Agents are informed about their obligations
 - ∴ new goal event

```
Plan to handle a new goal — maintenance goal pattern
```

• the goal is annotated with the group and role that generated the obligation

```
+!define_formation[group(G),role(R)]
  <- ... <the code> ...
```

```
// wait for the next cycle
.wait("+pos(X,Y,Cycle)");
```

// achieve that goal again !define_formation[group(G),role(R)].

Organisation Oriented Programming IV

- Agents are also informed by changes in the organisation
 - \therefore change the belief base
 - .: produce events

Examples

```
+play(Me,herder,G)
```

: .my_name(Me)

.broadcast(tell, group_leader(G,Me)).

-group(Type,GroupId) <- .drop_intention(_[group(GroupId)]).

Agent Oriented Programming I

The achievement of organisational goals is implemented in **Jason**

```
Goal: merge herding group
plan merge
let g_i be my herding group
forall herding group g_i such that g_i > g_i do
    let S_i be the set of cows of g_i's cluster
    let S_i be the set of cows of g_i's cluster
    if S_i \cap S_i \neq \emptyset then
        remove group g_i from the organisation
        ask all agents of g_i to adopt the role herdboy in g_i
                                   // new role \rightarrow new goals
```

Agent Oriented Programming II

Code in Jason

+!merge

```
: .my_name(Me) &
```

```
play(Me, herder, Gi) & // I play role herder
current_cluster(MyC) // MyC is the list with my cows
```

```
<- // for all other groups
   for (group_leader(Gj, L) & Me < L) {</pre>
     .send(L,askOne,current_cluster(_),current_cluster(TC))
     .intersection(MyC,TC,I);
     if (I \== []) {
        .send(L, achieve, change_role(herdboy,Gi))
     }
   }.
```

When the leader of other group change the role, he will ask his herdboys to also change the group

Object Oriented Programming

The following components were implemented in Java

- Integration with the contest simulator Agent perception and action
- Find paths: A*
- Compute the formation (a lot of vector calculations)
- ...
- # 130 lines of code in \mathcal{M} OISE⁺
- # 696 lines of code in **Jason**
- # 4218 lines of code in Java

Object Oriented Programming

The following components were implemented in Java

- Integration with the contest simulator Agent perception and action
- Find paths: A*
- Compute the formation (a lot of vector calculations)
- ...
- #~130 lines of code in $\mathcal{M}\mathrm{OISE}^+$
- # 696 lines of code in **Jason**
- # 4218 lines of code in Java

Useful tools — Mind inspector

	play(gaucho1,herder,gr_herding_grp_13) _[source(orgManager)] . play(gaucho4,herdboy,gr_herding_grp_13) _[source(orgManager)] . play(gaucho5,herdboy,gr_herding_grp_13) _[source(orgManager)] . pos(45,44,128) _[source(percept)] . scheme(herd_sch,sch_herd_sch_18) _[owner(gaucho3),source(orgManager)] . scheme(herd_sch,sch_herd_sch_12) _[owner(gaucho1),source(orgManager)] . scheme_group(sch_herd_sch_12,gr_herding_grp_13) _[source(orgManager)] . steps(700) _[source(self)] . target(6,44) _[source(gaucho1)] .				
- Rules	random_pos(X,Y) :- (pos(AgX,AgY,_418) & (jia.random(RX,40) & ((RX > 5) & ((X = ((RX-20)+AgX)) & ((X = ((RX-20)+AgX))) & ((X = ((RX-20)+AgX)) & ((X = ((RX-20)+Ag				
-	Sel	ld	Pen	Intended Means Stack (hide details)	
Intentions		16927	suspended- self	+!be_in_formation[scheme(sch_herd_sch_12),mission(hel +!be_in_formation[scheme(Sch),mission(Mission)]	

Useful tools — $MOISE^+$ GUI

jason-cowboys (Organisational Entity)

Agents

gaucho3 ; gaucho4 ; gaucho5 ; gaucho6 ; gaucho1 ; gaucho2 ;

Groups

e gr team 01

O gr exploration grp 02 players (2): gaucho3 (explorer); gaucho6 (scouter); o gr herding grp 05 players (4): gaucho1 (herder) ; gaucho2 (herdboy) ; gaucho4 (herdboy) ; gaucho5 (herdboy) ;

Typical screen

- have a brilliant idea
- code it
- basic test (JUnit, ASUnit, ...)
- watch the result in the contest scenarios
- read and analyse long logs, minds dumps, traces,
- find bugs (in the team, in S-MOISE⁺, ...), start again
- tuning of parameters (the cluster size?), start again
- give up the idea, start again

- have a brilliant idea
- code it
- basic test (JUnit, ASUnit, ...)
- watch the result in the contest scenarios
- read and analyse long logs, minds dumps, traces, performance...

note that we need to analyse the execution of 6 concurrent agents

- find bugs (in the team, in S-MOISE⁺, ...), start again
- tuning of parameters (the cluster size?), start again
- give up the idea, start again

- have a brilliant idea
- code it
- basic test (JUnit, ASUnit, ...)
- watch the result in the contest scenarios
- read and analyse long logs, minds dumps, traces, performance...

note that we need to analyse the execution of 6 concurrent agents

- find bugs (in the team, in S- $MOISE^+$, ...), start again
- tuning of parameters (the cluster size?), start again
- give up the idea, start again

- have a brilliant idea
- code it
- basic test (JUnit, ASUnit, ...)
- watch the result in the contest scenarios
- read and analyse long logs, minds dumps, traces, performance...

note that we need to analyse the execution of $\boldsymbol{6}$ concurrent agents

- \bullet find bugs (in the team, in $\mathcal{S}\text{-}\mathcal{M}\mathrm{OISE}^+,$...), start again
- tuning of parameters (the cluster size?), start again
- give up the idea, start again

- have a brilliant idea
- code it
- basic test (JUnit, ASUnit, ...)
- watch the result in the contest scenarios
- read and analyse long logs, minds dumps, traces, performance...

note that we need to analyse the execution of $\boldsymbol{6}$ concurrent agents

- \bullet find bugs (in the team, in $\mathcal{S}\text{-}\mathcal{M}\mathrm{OISE}^+,$...), start again
- tuning of parameters (the cluster size?), start again
- give up the idea, start again

Summary I

- Team
 - agents are autonomous to
 - adopt roles
 - decide how to achieve goals
 - coordination is essentially spacial (follow leader and formation)
 - communication is used to share information (speech act based)

Summary II

- Jason
 - declarative and goal oriented programming
 - goal patterns (maintenance goal)
 - meta-programming (.drop_intention(_[group(g1)])
 - customisations (integration with the simulator and the organisation)
 - internal actions (code in Java)
 - \therefore good programming style

Summary III

• \mathcal{M} OISE⁺

- definition of groups and roles
- allocation of goals to agents based on their roles
- to change the team, we (developers) 'simply' change the organisation
- global orchestration
- \therefore team strategy defined at a high level

Good points

- New scenario of the contest
- Use of 3 programming paradigms
- \bullet Improve several issues of Jason, $\mathcal{M}\mathrm{OISE}^+,$ and their integration
 - $\bullet~{\rm New}$ type of goal in ${\cal M}{\rm OISE}^+$ (maintenance goal)
 - More suitable for collaborative systems (group deletion)

- Too much time in 'debug, test, and tuning mode' we rather prefer analysis and programming
- The organisation dynamics is specified inside the agents it is coded and mixed in the agent's plans

ightarrow new language to define it from a global perspective

- The functional dimension of the team is quite simple it allows the definition of global plans useful to achieve shared goals
 - \rightarrow more complex team strategies
 - \rightarrow changes in the scenario
- It is quite difficult to map an idea into different levels of analysis

- Too much time in 'debug, test, and tuning mode' we rather prefer analysis and programming
- The organisation dynamics is specified inside the agents it is coded and mixed in the agent's plans
 - $\rightarrow\,$ new language to define it from a global perspective
- The functional dimension of the team is quite simple it allows the definition of global plans useful to achieve shared goals
 - \rightarrow more complex team strategies
 - \rightarrow changes in the scenario
- It is quite difficult to map an idea into different levels of analysis

- Too much time in 'debug, test, and tuning mode' we rather prefer analysis and programming
- The organisation dynamics is specified inside the agents it is coded and mixed in the agent's plans
 - $\rightarrow\,$ new language to define it from a global perspective
- The functional dimension of the team is quite simple it allows the definition of global plans useful to achieve shared goals
 - \rightarrow more complex team strategies
 - $\rightarrow\,$ changes in the scenario
- It is quite difficult to map an idea into different levels of analysis

- Too much time in 'debug, test, and tuning mode' we rather prefer analysis and programming
- The organisation dynamics is specified inside the agents it is coded and mixed in the agent's plans
 - $\rightarrow\,$ new language to define it from a global perspective
- The functional dimension of the team is quite simple it allows the definition of global plans useful to achieve shared goals
 - \rightarrow more complex team strategies
 - \rightarrow changes in the scenario
- It is quite difficult to map an idea into different levels of analysis

More information

- http://moise.sf.net
- http://jason.sf.net (the code of our agents is available there)
- J. F. Hübner, J. S. Sichman, and O. Boissier. Developing organised multi-agent systems using the *MOISE*⁺ model: Programming issues at the system and agent levels. *Int. J.Agent-Oriented Software Engineering*, 1(3/4):370–395, 2007.