
Introduction Design Implementation Conclusions

Jason and Moise+

Organisational Programming in the Agent Contest 2008

Jomi F. Hübner†, Rafael H. Bordini?

Gauthier Picard†

† ENS Mines Saint Etienne, France
{hubner,picard}@emse.fr

? University of Durham, UK
r.bordini@durham.ac.uk

Dagstuhl Seminar on Programming Multi-Agent Systems

Jason and Moise+ Dagstuhl, Sep 2008 1 / 30

Introduction Design Implementation Conclusions

Outline

1 Introduction

2 Design

3 Implementation

4 Conclusions

Jason and Moise+ Dagstuhl, Sep 2008 2 / 30

Introduction Design Implementation Conclusions context objectives

Agent Contest 2008
the Cows and Herders scenario

Jason and Moise+ Dagstuhl, Sep 2008 3 / 30

Introduction Design Implementation Conclusions context objectives

Objectives of our participation

In 2006: program our agents using plans

∴ reactive agents

In 2007: program our agents using goals

∴ goal directed agents

In 2008: program our agents using organisation

∴ join agent and system levels
 use Jason for the agents
 use Moise+ for the organisation

Test and improve Jason and Moise+ software

Evaluate the use of organisational constructors in the
development of the team

Jason and Moise+ Dagstuhl, Sep 2008 4 / 30

Introduction Design Implementation Conclusions context objectives

Objectives of our participation

In 2006: program our agents using plans

∴ reactive agents

In 2007: program our agents using goals

∴ goal directed agents

In 2008: program our agents using organisation

∴ join agent and system levels
 use Jason for the agents
 use Moise+ for the organisation

Test and improve Jason and Moise+ software

Evaluate the use of organisational constructors in the
development of the team

Jason and Moise+ Dagstuhl, Sep 2008 4 / 30

Introduction Design Implementation Conclusions specification dynamics goals

1 Introduction
context
objectives

2 Design
specification
dynamics
goals

3 Implementation
Moise+

Jason
Java
tools

4 Conclusions
results
discussion

Jason and Moise+ Dagstuhl, Sep 2008 5 / 30

Introduction Design Implementation Conclusions specification dynamics goals

Team specification — Groups

Our agents are organised in
two types of groups:

Exploration group: find
cows

Herding group: push cows
into the corral

Jason and Moise+ Dagstuhl, Sep 2008 6 / 30

Introduction Design Implementation Conclusions specification dynamics goals

Exploration group

Three instances of
exploration group

Each group is allocated to
an area of the scenario

One explorer:
decides where to go

One scouter:
follows explorer

Jason and Moise+ Dagstuhl, Sep 2008 7 / 30

Introduction Design Implementation Conclusions specification dynamics goals

Exploration group

Three instances of
exploration group

Each group is allocated to
an area of the scenario

One explorer:
decides where to go

One scouter:
follows explorer

Jason and Moise+ Dagstuhl, Sep 2008 7 / 30

Introduction Design Implementation Conclusions specification dynamics goals

Herding group

Created when a member
of the team sees some cow

As many instances as the
number of clusters of cows

One herder:
difines the team formation
for the cluster

scouters:
be in formation

spatial coordination

Jason and Moise+ Dagstuhl, Sep 2008 8 / 30

Introduction Design Implementation Conclusions specification dynamics goals

Herding group

Created when a member
of the team sees some cow

As many instances as the
number of clusters of cows

One herder:
difines the team formation
for the cluster

scouters:
be in formation

spatial coordination

Jason and Moise+ Dagstuhl, Sep 2008 8 / 30

Introduction Design Implementation Conclusions specification dynamics goals

Herding group

Created when a member
of the team sees some cow

As many instances as the
number of clusters of cows

One herder:
difines the team formation
for the cluster

scouters:
be in formation

spatial coordination

Jason and Moise+ Dagstuhl, Sep 2008 8 / 30

Introduction Design Implementation Conclusions specification dynamics goals

Structural Dynamics

Start exploring

Exploring

scouter

explorer

Jason and Moise+ Dagstuhl, Sep 2008 9 / 30

Introduction Design Implementation Conclusions specification dynamics goals

Structural Dynamics

Creation of herding group

Exploring

scouter

explorer

Herding

herder

herdboy

Jason and Moise+ Dagstuhl, Sep 2008 9 / 30

Introduction Design Implementation Conclusions specification dynamics goals

Structural Dynamics

Merge two herding groups

HerdingHerding

herder

herdboy

herder

herdboy

Jason and Moise+ Dagstuhl, Sep 2008 9 / 30

Introduction Design Implementation Conclusions specification dynamics goals

Structural Dynamics

Dissolve herding group

Herding

herder

herdboy

Exploring

scouter

explorer ...

Jason and Moise+ Dagstuhl, Sep 2008 9 / 30

Introduction Design Implementation Conclusions specification dynamics goals

Functional specification — Scheme to explore

Explorer (the leader) is obligated to mission l
Scouter is obligated to s

Jason and Moise+ Dagstuhl, Sep 2008 10 / 30

Introduction Design Implementation Conclusions specification dynamics goals

Functional specification — Scheme to herd

Herder (the leader) is obligated to mission l
Herdboy is obligated to b

Jason and Moise+ Dagstuhl, Sep 2008 11 / 30

Introduction Design Implementation Conclusions specification dynamics goals

Goals

Role Goal Goal Description

explorer find scouter find agent nearby to play scouter
change to herding change to a herding group
goto near unvisited go to the nearest unvisited location

scouter share seen cows share information about cows
follow leader follow the leader of the group

herder recruit recruit more herdboys
release boys release some herdboys
define formation compute the formation of the group
be in formation go to the place allocated to the agent
merge merge two herding groups
change to exploring change to an exploring group

herdboy share seen cows
be in formation

Jason and Moise+ Dagstuhl, Sep 2008 12 / 30

Introduction Design Implementation Conclusions Moise+ Jason Java tools

1 Introduction
context
objectives

2 Design
specification
dynamics
goals

3 Implementation
Moise+

Jason
Java
tools

4 Conclusions
results
discussion

Jason and Moise+ Dagstuhl, Sep 2008 13 / 30

Introduction Design Implementation Conclusions Moise+ Jason Java tools

Organisation Oriented Programming I

...

<group-specification id="team">

<sub-groups>

<group-specification id="exploration_grp"

min="0" max="3" >

<roles>

<role id="explorer" min="1" max="1"/>

<role id="scouter" min="0" max="1"/>

</roles>

</group-specification>

...

Jason and Moise+ Dagstuhl, Sep 2008 14 / 30

Introduction Design Implementation Conclusions Moise+ Jason Java tools

Organisation Oriented Programming II
Tools to run the organisation:

S-Moise+: organisational infrastructure

manage the state of the organisation

J -Moise+: integration with Jason

library of organisational actions
organisational architecture

Jason and Moise+ Dagstuhl, Sep 2008 15 / 30

Introduction Design Implementation Conclusions Moise+ Jason Java tools

Organisation Oriented Programming III
Agents are informed about their obligations
∴ new goal event

Plan to handle a new goal — maintenance goal pattern

the goal is annotated with the group and role that generated
the obligation

+!define_formation[group(G),role(R)]
<- ... <the code> ...

// wait for the next cycle
.wait("+pos(X,Y,Cycle)");

// achieve that goal again
!define_formation[group(G),role(R)].

Jason and Moise+ Dagstuhl, Sep 2008 16 / 30

Introduction Design Implementation Conclusions Moise+ Jason Java tools

Organisation Oriented Programming IV

Agents are also informed by changes in the organisation
∴ change the belief base
∴ produce events

Examples

+play(Me,herder,G)

: .my_name(Me)

<- +group_leader(G,Me);

.broadcast(tell, group_leader(G,Me)).

-group(Type,GroupId)

<- .drop_intention(_[group(GroupId)]).

Jason and Moise+ Dagstuhl, Sep 2008 17 / 30

Introduction Design Implementation Conclusions Moise+ Jason Java tools

Agent Oriented Programming I

The achievement of organisational goals is implemented in
Jason

Goal: merge herding group

plan merge

let gi be my herding group
forall herding group gj such that gi > gj do

let Si be the set of cows of gi ’s cluster
let Sj be the set of cows of gj ’s cluster
if Si ∩ Sj 6= ∅ then

remove group gj from the organisation
ask all agents of gj to adopt the role herdboy in gi

// new role → new goals

Jason and Moise+ Dagstuhl, Sep 2008 18 / 30

Introduction Design Implementation Conclusions Moise+ Jason Java tools

Agent Oriented Programming II

Code in Jason
+!merge
: .my_name(Me) &
play(Me, herder, Gi) & // I play role herder
current_cluster(MyC) // MyC is the list with my cows

<- // for all other groups
for (group_leader(Gj, L) & Me < L) {
.send(L,askOne,current_cluster(_),current_cluster(TC));
.intersection(MyC,TC,I);
if (I \== []) {

.send(L, achieve, change_role(herdboy,Gi))
}

}.

When the leader of other group change the role, he will ask his
herdboys to also change the group

Jason and Moise+ Dagstuhl, Sep 2008 19 / 30

Introduction Design Implementation Conclusions Moise+ Jason Java tools

Object Oriented Programming

The following components were implemented in Java

Integration with the contest simulator
Agent perception and action

Find paths: A∗

Compute the formation (a lot of vector calculations)

...

130 lines of code in Moise+

696 lines of code in Jason

4218 lines of code in Java

Jason and Moise+ Dagstuhl, Sep 2008 20 / 30

Introduction Design Implementation Conclusions Moise+ Jason Java tools

Object Oriented Programming

The following components were implemented in Java

Integration with the contest simulator
Agent perception and action

Find paths: A∗

Compute the formation (a lot of vector calculations)

...

130 lines of code in Moise+

696 lines of code in Jason

4218 lines of code in Java

Jason and Moise+ Dagstuhl, Sep 2008 20 / 30

Introduction Design Implementation Conclusions Moise+ Jason Java tools

Useful tools — Mind inspector

Jason and Moise+ Dagstuhl, Sep 2008 21 / 30

Introduction Design Implementation Conclusions Moise+ Jason Java tools

Useful tools — Moise+ GUI

Jason and Moise+ Dagstuhl, Sep 2008 22 / 30

Introduction Design Implementation Conclusions Moise+ Jason Java tools

Typical screen

Jason and Moise+ Dagstuhl, Sep 2008 23 / 30

Introduction Design Implementation Conclusions Moise+ Jason Java tools

Typical development cycle

have a brilliant idea

code it

basic test (JUnit, ASUnit, ...)

watch the result in the contest scenarios

read and analyse long logs, minds dumps, traces,
performance...
note that we need to analyse the execution of 6 concurrent agents

find bugs (in the team, in S-Moise+, ...), start again

tuning of parameters (the cluster size?), start again

give up the idea, start again

Jason and Moise+ Dagstuhl, Sep 2008 24 / 30

Introduction Design Implementation Conclusions Moise+ Jason Java tools

Typical development cycle

have a brilliant idea

code it

basic test (JUnit, ASUnit, ...)

watch the result in the contest scenarios

read and analyse long logs, minds dumps, traces,
performance...
note that we need to analyse the execution of 6 concurrent agents

find bugs (in the team, in S-Moise+, ...), start again

tuning of parameters (the cluster size?), start again

give up the idea, start again

Jason and Moise+ Dagstuhl, Sep 2008 24 / 30

Introduction Design Implementation Conclusions Moise+ Jason Java tools

Typical development cycle

have a brilliant idea

code it

basic test (JUnit, ASUnit, ...)

watch the result in the contest scenarios

read and analyse long logs, minds dumps, traces,
performance...
note that we need to analyse the execution of 6 concurrent agents

find bugs (in the team, in S-Moise+, ...), start again

tuning of parameters (the cluster size?), start again

give up the idea, start again

Jason and Moise+ Dagstuhl, Sep 2008 24 / 30

Introduction Design Implementation Conclusions Moise+ Jason Java tools

Typical development cycle

have a brilliant idea

code it

basic test (JUnit, ASUnit, ...)

watch the result in the contest scenarios

read and analyse long logs, minds dumps, traces,
performance...
note that we need to analyse the execution of 6 concurrent agents

find bugs (in the team, in S-Moise+, ...), start again

tuning of parameters (the cluster size?), start again

give up the idea, start again

Jason and Moise+ Dagstuhl, Sep 2008 24 / 30

Introduction Design Implementation Conclusions Moise+ Jason Java tools

Typical development cycle

have a brilliant idea

code it

basic test (JUnit, ASUnit, ...)

watch the result in the contest scenarios

read and analyse long logs, minds dumps, traces,
performance...
note that we need to analyse the execution of 6 concurrent agents

find bugs (in the team, in S-Moise+, ...), start again

tuning of parameters (the cluster size?), start again

give up the idea, start again

Jason and Moise+ Dagstuhl, Sep 2008 24 / 30

Introduction Design Implementation Conclusions results discussion

Summary I

Team
agents are autonomous to

adopt roles
decide how to achieve goals

coordination is essentially spacial
(follow leader and formation)
communication is used to share information
(speech act based)

Jason and Moise+ Dagstuhl, Sep 2008 25 / 30

Introduction Design Implementation Conclusions results discussion

Summary II
Jason

declarative and goal oriented programming
goal patterns (maintenance goal)
meta-programming (.drop intention([group(g1)])
customisations (integration with the simulator and the
organisation)
internal actions (code in Java)

∴ good programming style

Jason and Moise+ Dagstuhl, Sep 2008 26 / 30

Introduction Design Implementation Conclusions results discussion

Summary III

Moise+

definition of groups and roles

allocation of goals to agents based on their roles

to change the team, we (developers) ‘simply’ change the
organisation

global orchestration

∴ team strategy defined at a high level

Jason and Moise+ Dagstuhl, Sep 2008 27 / 30

Introduction Design Implementation Conclusions results discussion

Good points

New scenario of the contest

Use of 3 programming paradigms

Improve several issues of Jason, Moise+, and their
integration

New type of goal in Moise+ (maintenance goal)
More suitable for collaborative systems (group deletion)

Jason and Moise+ Dagstuhl, Sep 2008 28 / 30

Introduction Design Implementation Conclusions results discussion

Weak points

Too much time in ‘debug, test, and tuning mode’
we rather prefer analysis and programming

The organisation dynamics is specified inside the agents
it is coded and mixed in the agent’s plans

→ new language to define it from a global perspective

The functional dimension of the team is quite simple
it allows the definition of global plans useful to achieve shared goals

→ more complex team strategies
→ changes in the scenario

It is quite difficult to map an idea into different levels of
analysis
what is organisation and what is agent planning; what is Moise+,

Jason, or Java

Jason and Moise+ Dagstuhl, Sep 2008 29 / 30

Introduction Design Implementation Conclusions results discussion

Weak points

Too much time in ‘debug, test, and tuning mode’
we rather prefer analysis and programming

The organisation dynamics is specified inside the agents
it is coded and mixed in the agent’s plans

→ new language to define it from a global perspective

The functional dimension of the team is quite simple
it allows the definition of global plans useful to achieve shared goals

→ more complex team strategies
→ changes in the scenario

It is quite difficult to map an idea into different levels of
analysis
what is organisation and what is agent planning; what is Moise+,

Jason, or Java

Jason and Moise+ Dagstuhl, Sep 2008 29 / 30

Introduction Design Implementation Conclusions results discussion

Weak points

Too much time in ‘debug, test, and tuning mode’
we rather prefer analysis and programming

The organisation dynamics is specified inside the agents
it is coded and mixed in the agent’s plans

→ new language to define it from a global perspective

The functional dimension of the team is quite simple
it allows the definition of global plans useful to achieve shared goals

→ more complex team strategies
→ changes in the scenario

It is quite difficult to map an idea into different levels of
analysis
what is organisation and what is agent planning; what is Moise+,

Jason, or Java

Jason and Moise+ Dagstuhl, Sep 2008 29 / 30

Introduction Design Implementation Conclusions results discussion

Weak points

Too much time in ‘debug, test, and tuning mode’
we rather prefer analysis and programming

The organisation dynamics is specified inside the agents
it is coded and mixed in the agent’s plans

→ new language to define it from a global perspective

The functional dimension of the team is quite simple
it allows the definition of global plans useful to achieve shared goals

→ more complex team strategies
→ changes in the scenario

It is quite difficult to map an idea into different levels of
analysis
what is organisation and what is agent planning; what is Moise+,

Jason, or Java

Jason and Moise+ Dagstuhl, Sep 2008 29 / 30

Introduction Design Implementation Conclusions results discussion

More information

http://moise.sf.net

http://jason.sf.net

(the code of our agents is available there)

J. F. Hübner, J. S. Sichman, and O. Boissier. Developing
organised multi-agent systems using the Moise+ model:
Programming issues at the system and agent levels. Int.
J.Agent-Oriented Software Engineering, 1(3/4):370–395,
2007.

Jason and Moise+ Dagstuhl, Sep 2008 30 / 30

http://moise.sf.net
http://jason.sf.net

	Introduction
	context
	objectives

	Design
	specification
	dynamics
	goals

	Implementation
	Moise+
	Jason
	Java
	tools

	Conclusions
	results
	discussion

