Organisational Artifacts and Agents For Open Multi-Agent Organisations

"Giving the power back to the agents"

Rosine Kitio¹ Olivier Boissier¹
Jomi F. Hübner^{1,2} Alessandro Ricci³

 $^{1} \mbox{ENSM.SE},$ France & $^{2} \mbox{FURB},$ Brazil & $^{3} \mbox{DEIS},$ Italy

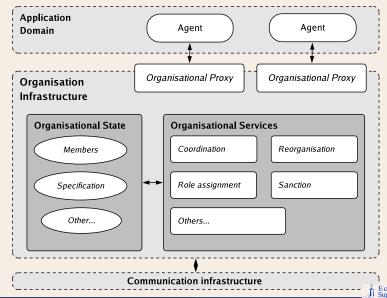
EUMAS 2007

Outline

- Introduction
- ORA4MAS Infrastructure
- \circ Shaping ORA4MAS on \mathcal{M} OISE⁺
- Conclusion and perspectives

MAS Organisation and its importance for MAS

- A multiagent system has two properties which seem controversial:
 - a global purpose × autonomous agents While the autonomy of the agents is essential for the MAS, it may cause the looseness of the global congruence
- The organisation of an MAS is used to solve this conflict constraining the agents' behaviour towards global purposes
- Example: when an agent adopts the student role, he indeed adopts a set of behavioural constraints that helps the achievement of the global purpose of the school

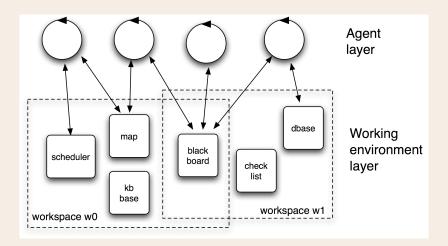


- New (heterogeneous) agents should be able to
 - enter and leave a running MAS
 - know the organisation system level, e.g. the system has a service that provides a description of the organisation
 - reason about it agent level
- New agents have to follow some organisational rules organisational enforcement can be implemented
 - by the agents
 - by the system

EUMAS 2007

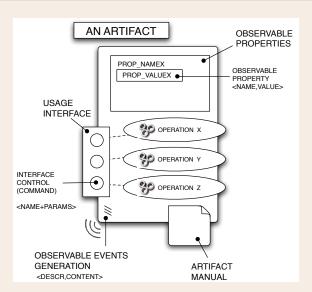
Current approaches — enforcement at the system level

Current approaches


and some problems — organisational enforcement only at system level

- Organisational services are implemented as "special" agents — which are **conceptually different** — agents doing services
- Organisational decisions are taken in the services layer the organisation middleware has too much power
 - For example, if some agent performs a forbidden action, the middleware **detects** it as a violation and **decides** to apply a sanction (or even disable the execution of the action)
 - services taken decisions which are "closed" for the agents
- 3 Organisational proxies are different for each implementation (the agent should be developed for a specific proxy)

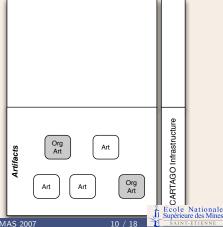
Objective


- Provide a conceptual and architectural step towards the simplification of the development of open and organised MAS
- Proposal: ORA4MAS
 - Approach based on the simple concept of artifacts
 - · While agents model the decisions of the system, the artifacts model its functions

Agents & Artifacts

8 / 18

Artifacts

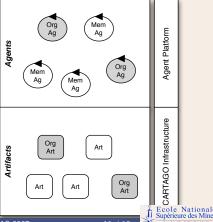

9 / 18

ORA4MAS

To engineer the organisational infrastructure in terms of organisational artifacts and agents

Organisational Artifacts

- they are discovered and used by the agents to work inside the organisation
- encapsulate organisational functionalities, that agents of an organisation may want/have to use in order to participate in organisational activities



ORA4MAS

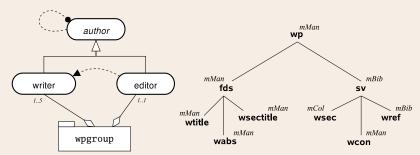
To engineer the organisational infrastructure in terms of organisational artifacts and agents

Organisational Agents

- they dynamically manage and adapt the organisation by creating and linking artifacts
- responsible of management of activities inside the organisation (observing, monitoring, reasoning and deciding about organisation)

- \circ $\mathcal{M}\text{OISE}^+$ will be used as a first case study for the \circ ORA4MAS approach
- It is an organisational model that allows us to specify three dimensions of the organisation
 - structural specification (roles and groups)
 - o functional specification (goals, missions, schemes)
 - deontic specification (obligations and permissions)

Organisational Artifacts for $\mathcal{M}{ m OISE}^+$


ORG-BOARD org-spec current-groups current-schemes enterOrg leaveOrg registerGroup(G,GB) removeGroup(G) registerScheme(S,SB) removeScheme(S)

GROUP-BOARD role-assignmnents adoptRole(R) giveUpRole(R) sendMsq(A,M)

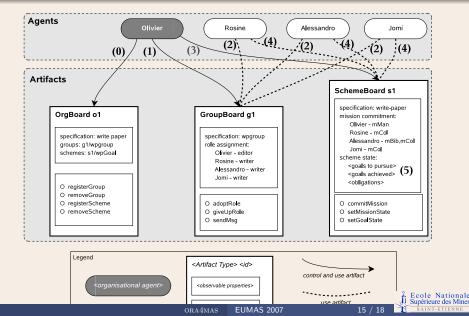
SCHEME-BOARD scheme-state missions-committed commitMission(M) setMissionState(M,S) setGoalState(G,S)

13 / 18

Example: "writing a paper" — specification

(a) Structural Specification

(b) Functional Specification - "write-paper"


editor	permission	mMan
writer	obligation	mCol
writer	obligation	mBib

(c) Deontic Specification

Introduction ORA4MAS Instantiation Conclusions ORA4MAS $\mapsto \mathcal{M}$ OISE⁺ example

Example: "writing a paper" — dynamics

ORA4MAS platform

This approach is being implemented using

- CARTAGO for the artifacts infrastructure (provides distribution of the artifact in a network)
- S- \mathcal{M} OISE⁺ for the artifact operations (provides algorithms for the operations of the artifacs)
- \mathcal{J} - \mathcal{M} OISE⁺ for agent's programming (using the CARTAGO - Jason integration to provides artifact access to **Jason** agents)

Conclusion – "Power back to agents"

- Encapsulation of organisational **functions** in artifacts
- Organisational decisions are given to the agents
- Decentralised management (several agents and artifacts)
- Organisational enforcement is done by agents (based on particullar domain requirements)
- Openness
 - Manuals can be read for new coming agents
 - The organisational decisions are open to agents

Perspectives

- A generic solution
 - Apply ORA4MAS to other organisational models (ISLANDER, OMNI, MOISE Inst, AGR, ...)
- An adaptative solution
 - Study the reorganisation process of an MAS with organisational artifacts
- Control the access to organisational artifacts
 - Define a meta-organisation for the ORA4MAS, having special roles for organisational agents that give them access to the organisational artifacts

