
Organisational Artifacts and Agents
For Open Multi-Agent Organisations:
“Giving the power back to the agents”

Rosine Kitio1, Olivier Boissier1 ?, Jomi F. Hübner1,2 ??, and Alessandro Ricci3

1 SMA/G2I/ENSM.SE, 158 Cours Fauriel
42023 Saint-Etienne Cedex, France

{kitio,boissier,hubner}@emse.fr
2 GIA/DSC/FURB, Braz Wanka, 238

89035-160, Blumenau, Brazil
jomi@inf.furb.br

3 DEIS, ALMA MATER STUDIORUM Università di Bologna
47023 Cesena (FC), Italy
a.ricci@unibo.it

Abstract. The social and organisational aspects of agency have become nowa-
days a major focus of interest in the MAS community, and a good amount of the-
oretical work is available, in terms of formal models and theories. However, the
conception and engineering of proper organisational infrastructures embodying
such models and theories is still an open issue, in particular when open MAS are
considered. Accordingly, in this paper we discuss a model for an organisational
infrastructure called ORA4MAS that aims at addressing these issues. By being
based on the A&A (Agents and Artifacts) meta-model, the key and novel aspect
introduced with ORA4MAS is that organisations and the organisation infrastruc-
ture itself are conceived in terms of agents and artifacts, as first-class abstractions
giving body to the MAS from design to runtime.
Keywords: Multi-agent Systems, MAS organisations, Open systems.

1 Introduction

Nowadays, current applications of IT show the interweaving of both human and tech-
nological communities in which software entities act on behalf of users and cooperate
with infohabitants, taking into account issues like trust, security, flexibility, adaptation
and openness [12, 24]. As shown in [16], current applications have led to an increase in
number of agents, in the duration and repetitiveness of their activities, with a decision
and action perimeter still enlarging. Moreover the number of agents’ designers is also
increasing, leading to a huge palette of heterogeneity in these systems. Most designers
have doubts about how to put these concepts in practice, i.e., how to program them,
while both addressing the openness and scalability issues and keeping agent’s auton-
omy and decentralisation which are essential features of MAS. The complex system
? Partially supported by USP-COFECUB.

?? Supported by ANR Project ForTrust.

engineering’s approach needed to build such applications highlights and stresses re-
quirements on openness in terms of ability to take into account several kinds of changes
and to adapt the system configuration while it keeps running.

Since it is a huge and complex work to develop systems with this kind of openness,
in this paper we propose an organisational infrastructure referred as ORA4MAS which
is meant to provide a conceptual and architectural step towards the simplification of
this problem. Our proposal is based on the A&A approach [23] where instead of a lot
of different components and concepts (e.g., agents, services, proxies, objects, ...), only
two types of entities are involved: agents and artifacts. Roughly, while agents model
the decisions of the system, the artifacts model its functions. We especially demonstrate
this approach showing how the organisational aspect of the MAS can be conceived
and designed by only organisational agents and organisational artifacts. This is in
analogy with human organisation and organisation infrastructures, that are populated
by humans (as participants and part of the organisation machinery), and by rich sets of
artifacts and tools that humans use to support their activities inside the organisation and
the organisation itself, encapsulating essential infrastructure services.

In the first part of the paper (Sec. 2), we will have a look at the different approaches
that have been developed in the field of multi-agent organisation, stressing what lim-
itations we consider. This is complemented by a look at what has been done in the
other dimensions of an MAS, i.e., environment and interaction. Then, we present the
basic concepts underlying ORA4MAS infrastructure (Sec. 3), and we briefly describe
the shapes of the organisational artifacts devised in ORA4MAS reifying theMOISE+

organisational model (Sec. 4). Finally, we provide concluding remarks and perspectives
for the work in (Sec. 5)

2 Background

The recent developments in MAS domain, belonging to what we call Organisation Ori-
ented Programming (OOP) [2], have provided many proposals of organisation-oriented
middleware. In the different approaches related to OOP, we distinguish two important
components: a declarative Organisation Modelling Language (OML) and an Organi-
sation Implementation Architecture (OIA). The OML specifies the organisation(s) of
an MAS. It is used to collect and express specific constraints and cooperation patterns
imposed on the agents by the designer (or the agents), resulting in an explicit represen-
tation that we call Organisation Specification (OS). A collective entity, called Organi-
sation Entity (OE), instantiates this OS by assigning agents to roles. The OIA will then
help these agents to properly “play” their roles as they are specified in the OS.

The OIA normally considers both an agent centered and a system centered point
of view.4 In the former, the focus lies on how to develop different agent reasoning
mechanisms to interpret and reason on the OS and OE applied to the agents [3, 4]. In
the latter, the main concern is how to develop an infrastructure, that we call Organisation
Infrastructure (OI), that ensures the satisfaction of the organisational constraints (e.g.,
agents playing the right roles, following the specified norms). This second point of

4 Let’s notice that in [28] these points of view are called agent and institutional perspectives.

view is important in heterogeneous and open systems where the agents that enter into
the system may have unknown architectures. Of course, to develop the overall MAS,
the former point of view is necessary since the agents probably need to have access to
an organisational representation that enable them to reason about it.

The implementation of OI normally follows a common trend in multiagent plat-
forms. These platforms, e.g. JADE [1], have demonstrated the requirement and utility
of the notion of “infrastructure” for MAS development [10]. Not only have they sup-
ported the implementation of the agents, but are being noticed as a provider of funda-
mental global generic services going further of only directory facilitator, agent manage-
ment system or agent communications by also addressing coordination [19]. Therefore,
agents related to the application domain operate on top of a middleware layer.

As shown in [2], many implementations of OI follow the general layered architec-
ture depicted in Fig. 1: (i) domain (or application) agents, responsible to achieve organ-
isational goals, use an organisational proxy component to interact with the organisa-
tion, (ii) the organisational middleware, responsible to bind all agents in a coherent OS
and OE and provides some services for them, and (iii) communication infrastructure for
connecting all components in a distributed and heterogeneous applications. This layered
structure results in an engineering approach where the MAS development is considered
to be addressed by three kinds of designers: domain or application designers (for the
agents and the specification of the OS using the OML), MAS or OI designers (for the
organisational infrastructure and OE management), and communication designers.

From the study of the different works considering the OI, we can identify a set of
specialised services and proxies (e.g., angels [5], governors [7], managers [14]). In or-
der to stress their ability to manage organisational concepts and to develop dedicated
reasoning/processing abilities on the organisation, let’s call them organisational ser-
vices (OrgServices). One important point to notice is that all the access to the OI by the
agents is mediated by these organisational proxies.

This brief general introduction of OI designs allow us to point out some drawbacks:

1. In some proposals, like S-MOISE+ [14], OrgServices are implemented as agents.
The problem is that, conceptually, services are not in the same abstraction level as
agents.

2. In the proposals where OrgServices are not agents, whenever an application de-
signer needs to customise some decisions of the system in the organisational di-
mension (e.g., a sanction system, a reorganisation strategy, the assignment of roles
to agents), s/he has to develop/change an OrgService. It can be quite confusing to
deal with both OrgServices and agents concepts while developing a system. It will
be better to always use the same abstraction level when modelling and implement-
ing the decision aspect of the application.

3. The designer (and the agents) also have to deal with two kinds of environments: a
virtual organisational environment (where the agents adopt roles, send messages)
and the real environment (where the agents act). An unified view of the environment
simplifies the concept of agent interaction.

4. In the general architecture of Fig. 1, the organisation middleware has too much
power. Most of the organisational “decisions” are performed at this layer. It is more
suitable if the agents make decisions and not the OrgServices. For example, if some

Fig. 1. Common Organisation Infrastructure for open MAS.

agent wants to perform some action or send a message that its organisation does
not allow, it can not do it since the middleware (and its organisational proxy) will
detect this violation tentative and decide on the sanction to apply. The middleware
is thus performing two functions: detection and decision/judgement. In some cases
agents operating on the application layer should get their control power back in
the sense that they should play some of the roles of the OrgServices. As another
example, reorganisation requires that agents should be able to manage and access
the creation of new organisations.

The problems of existing approaches of organisations are consequence of some
properties of the OrgServices design: (i) the enforcement of organisational functions
and constraints and (ii) the inclusion of reasoning and decision aspects that can be man-
aged by agents and thus should be in the agent layer.

It’s worth noting that the issues stated here do not concern solely the implementation
level, but also the conceptual and theoretical level: what is the nature of OrgServices in
MAS where only agents are considered as first-class entities?

3 An Organisational Infrastructures based on Agents and
Artifacts

The proposal presented in this paper draws its inspiration from human organisation
infrastructures. Human organisation and organisation infrastructures, that are populated
by humans (as participants and part of the organisation machinery), and by rich sets
of artifacts and tools that humans use to support their activities inside the organisation
and the organisation itself, encapsulating essential infrastructure services. According

to psycho-sociological theories and studies such as Activity Theory and Distributed
Cognition [17]—recently adopted in computer science fields such as CSCW, HCI and
MAS [27, 25, 22]—the notion of artifact (and tool, taken here as a synonym) plays a key
role for the overall sustainability of an organisation and the effectiveness and efficiency
of activities taking place inside the organisation.

In particular, some of these artifacts—that we call here organisational artifacts—
appear to be vital for supporting the coordination of organisation processes and manage-
ment: for instance by making more effective the communication among the members
of an organisation (e.g. the telephone, instant-messaging services, chat-rooms), by pro-
viding information useful for orienting the activities of organisation participants (e.g.,
signs inside a building), by coordinating participants (e.g., queue systems at the post-
office), by controlling access to resources and enforcing norms (e.g., the badge used
by members in a computer science department to access certains rooms or use some
other artifacts, such as copiers). Human societies and organisations continuously im-
prove their experience in designing artifacts more and more effective to support both
organisation participation—helping members to cope with the complexity of social ac-
tivities and work—and organisation management—helping managers to monitor and
control the organisation behaviour as a whole.

In the remainder of the section, first we recall the basic ideas provided by the
A&A meta-model [23], and then describe how such concepts are exploited to shape
the ORA4MAS infrastructure.

3.1 The Notion of Artifacts in MAS

The notion of MAS environment, as remarked by recent literatures, has gained a key
role in the recent past, becoming a mediating entity, functioning as enabler but possibly
also as a manager and constrainer of agent actions, perceptions, and interactions (see
[29] for comprehensive surveys). According to such a perspective, the environment is
not a merely passive source of agent perceptions and target of agent actions—which is,
actually, the dominant perspective in agency and in MAS—, but a first-class abstrac-
tion that can be suitably designed to encapsulate some fundamental functionalities and
services, supporting MAS dimensions such as coordination and organisation, besides
agent mobility, communications, security, etc.

Among the various approaches, the A&A in particular introduces a notion of work-
ing environment, representing such a part of the MAS explicitly designed on the one
hand by MAS engineers to provide various kinds of functionality—including MAS co-
ordination, organisation—and perceived as first-class entity on the other hand by agents
of the MAS [23, 20]. A&A working environment are made of artifacts, representing
function-oriented dynamic entities and tools that agents can create and use to perform
their individual and social activities. Among the several sort of artifacts, coordination
artifacts have been introduced as an important class of artifacts organisations [21],
as artifacts mediating agent interactions and encapsulating some kind of coordinating
functionality— whiteboards, event services, shared task schedulers are examples. Ar-
tifacts can be considered as a complimentary abstraction to agent populating an MAS:
while agents are goal-oriented pro-active entities, artifacts are a general abstraction to
model function-oriented passive entities, designed by MAS designers to encapsulate

INTERFACE
CONTROL
(COMMAND)

<NAME+PARAMS>

 OPERATION Y

 OPERATION Z

 OPERATION X

USAGE
INTERFACE

PROP_NAMEX
PROP_VALUEX OBSERVABLE

PROPERTY
<NAME,VALUE>

OBSERVABLE
PROPERTIES

OBSERVABLE EVENTS
GENERATION ARTIFACT

MANUAL<DESCR,CONTENT>

AN ARTIFACT

Fig. 2. (Left) abstract representation of workspaces, populated by agents—represented by
circles—and artifacts—represented by squares. (Right) A representation of the main parts and
properties of an artifact, with the usage interface, the observable properties and the manual.

some kind of functionality, by representing (or wrapping existing) resources or instru-
ments mediating agent activities. Passive here means that—differently from the agent
case—they do not encapsulate any thread of control.

Fig. 2 shows an abstract representation of an artifact as defined in the A&A meta-
model, exhibiting analogous parts and properties of artifacts as found in human society.
The artifact function—and related artifact behaviour—is partitioned in a set of opera-
tions, which agents can trigger by acting on artifact usage interface. The usage interface
provides all the controls that make it possible for an agent to interact with an artifact,
that is to use and observe it. Agents can use an artifact by triggering the execution of
operations through the usage interface and by perceiving observable events generated
by the artifact itself, as a result of operation execution and evolution of its state. Be-
sides the controls for triggering the execution of operation, an artifact can have some
observable properties, i.e., properties whose value is made observable to agents, with-
out necessarily executing operations on it. The interaction between agents and artifacts
strictly mimics the way in which humans use their artifacts: let’s consider a coffee ma-
chine, for a simple but effective analogy. The set of buttons of the coffee machines
represents the usage interface, while the displays that are typically used to show the
state of the machine represent artifact observable properties. The signals emitted by the
coffee machine during its usage represent observable events generated by the artifact.

Analogously to the human case, in A&A each artifact type can be equipped by the
artifact programmer with a manual composed essentially by the function description—
as the formal description of the purpose intended by the designer—, the usage inter-
face description—as the formal description of artifact usage interface and observable
states—, and finally the operating instructions—as the formal description of how to
properly use the artifact so as to exploit its functionalities. Such a manual is meant to
be essential for creating open systems with intelligent agents that dynamically discover
and select which kind of artifacts could be useful for their work, and then can use them

effectively even if they have not been pre-programmed by MAS programmers for the
purpose.

3.2 ORA4MAS Infrastructure

The basic idea in ORA4MAS is to engineer the organisational infrastructure—and the
organisations living upon it—in terms of agents and artifacts, following the basic A&A
metamodel. Here we use the terms organisational agents and organisational artifacts
to identify those agents and artifacts of the MAS which are part of the organisational
infrastructure, and that are responsible of activities and encapsulate functionalities con-
cerning the management and enactment of the organisation. In particular, organisational
agents —analogously to managers and administrators in human organisation— are re-
sponsible of management activities inside the organisation, concerning observing, mon-
itoring, and reasoning about organisation dynamics, etc. Such activities take place by
creating and managing organisational artifacts that are then used by member agents of
the organisation. Organisational artifacts are those artifacts that agents of an organisa-
tion may want or have to use in order to participate in organisation activities and access
to organisation resources, encapsulating organisation rules and functionalities, such as
enabling and mediating (ruling) agent interaction, tracing and ruling resource access,
and so on.

Even from this abstract characterisation, it is possible to identify some general prop-
erties that are of some importance to face the drawbacks listed at the end of Section 2.

Abstraction & encapsulation. By using agents and artifacts to reify both the organi-
sation and the organisation infrastructure—from design to runtime—, we raise the level
of abstraction with respect to approaches in which organisation mechanisms are hidden
at the implementation level. Such mechanisms become parts of the agent world, suit-
ably encapsulated in proper entities that agents then can inspect, reason and manipulate,
by adopting a uniform approach.

Agent autonomy. Agents are still autonomous with respect to decision of using or not
a specific artifact—including the organisational artifacts—and keeps its autonomy—in
terms of control of its actions—while using organisational artifacts. Agents however can
depend on the functionalities provided (encapsulated) by artifacts, which can concern,
for instance, some kind of mediation with respect to the other agents co-using the same
organisational artifact. Then, by enforcing some kind of mediation policy an artifact can
be both an enabler and a constrainer of agent interactions. However, such a constraining
function can take place without compromising the autonomy of the agents regarding
their decisions.

Distributed management. Distributing the management of the organisation into dif-
ferent organisational artifacts installs a distributed coordination (meaning here more
particularly synchronisation) of the different functions related to the management of
the organisation. Completing this distribution of the coordination, the reasoning and
decision processes which are encapsulated in the organisational agents may be also
distributed among the different agents. Thanks to their respective autonomy, all the
reasoning related to the management of the organisation (monitoring, reorganisation,
control) may be decentralized into different loci of decision with a loosely coupled set
of agents.

Openness. Organisational artifacts can be created and added dynamically according
to the need. They have a proper semantics description of both the functionalities and
operating instructions, so conceptually agents can discover at runtime how to use them
in the best way. Related to openness, the approach promotes heterogeneity of agent
(societies): artifacts can be used by heterogeneous kinds of agents, with different kinds
of reasoning capabilities. Extending the idea to multiple organisations, we can have the
same agents playing different roles in different organisations, and then interacting with
organisational artifacts belonging to different organisations.

“Power back to agents”. The decisions that were embedded in the OrgServices in
the OI go back to the agents’ layer in organisational agents. In ORA4MAS artifacts
encapsulate the coordination and synchronisation which were implemented in OrgSer-
vices. Control and judgement procedures are separated from these aspects and are em-
bedded in organisational agents. Organisational agents can then use organisational arti-
facts to help them in deciding and eventually applying sanctions to other agents.

After sketching the basic concepts underlying the ORA4MAS approach, in next
section we finally describe how a full-fledged organisational model can be abstractly
implemented on top of agents and artifacts.

4 Shaping ORA4MAS Artifacts Upon MOISE+

Fig. 3. Structure.

MOISE+ (Model of Organisation for multI-agent Sys-
tEms) [13] is an OML that explicitly decomposes the
organisation into structural, functional, and deontic di-
mensions. The structural dimension defines the roles,
groups, and links of the organisation. The definition of
roles states that when an agent decides to play some
role in a group, it is accepting some behavioural con-
straints related to this role. The functional dimension
describes how the global collective goals should be
achieved, i.e., how these goals are decomposed (in
global plans), grouped in coherent sets (by missions)
to be distributed to the agents. The decomposition
of global goals results in a goal-tree, called scheme,
where the leafs-goals can by achieved individually by the agents. The deontic dimen-
sion is added in order to binds the structural dimension with the functional one by the
specification of the roles’ permissions and obligations for missions. Instead of being re-
lated to the agents’ behaviour space (what they can do), the deontic dimension is related
to the agents’ autonomy (what they should do).

As an illustrative and simple example of an organisation specified usingMOISE+,
we consider a set of agents that wants to write a paper and therefore has an organisa-
tional specification to help them to collaborate. The structure of this organisation has
only one group (wpgroup) with two roles (editor and writer) that are sub-role of the
role author. The cardinalities and links of this group are specified, using theMOISE+

notation, in Fig. 3: the group can have from one to five writers and exactly one editor;
the editor has authority on writers and every author (and by inheritance every writer

and editor) has a communication link to all other authors. In this example, the editor
and the author roles are not compatible, to be compatible a compatibility relation must
be explicitly added in the specification.

Fig. 4. Functioning.

role deontic relation mission cardinality

editor permission mMan 1..1
writer obligation mCol 1..5
writer obligation mBib 1..1

Fig. 5. Deontic relations.

To coordinate the achieve-
ment of the goal of writing a
paper, a scheme is defined in
the functional specification of
the organisation (Fig. 4). In this
scheme, an agent initially de-
fines a draft version of the pa-
per (identified by the goal fdv in
the scheme of Fig. 4) that has
the following sub-goals: write
a title, an abstract, the intro-
duction, and the section names.
Other agents then “fill” the pa-
per’s sections to get a submis-
sion version of the paper (iden-
tified by the goal sv). The goals
of this scheme are distributed in
three missions: mMan (general
managing of the process), mCol
(collaborate in the paper writing
the content), and mBib (get the
references for the paper). A mission defines all goals an agent commits to when par-
ticipating in the execution of a scheme, for example, commit to the mission mMan
is indeed a commitment to achieve six goals of the scheme. The deontic relation from
roles to missions is specified in Fig. 5. For example, any agent playing the role editor
is permitted to commit to the mission mMan. The structural, functional, and deontic
specifications briefly described here form an Organisational Specification (OS) where,
for example, some agents can “instantiate” an Organisational Entity (OE).

Organisational Agents and Artifacts based on MOISE+. We exploit here the
MOISE+ model to identify and shape a basic set of organisational artifacts (kind) and
agents that constitute the basic infrastructure building blocks of ORA4MAS, being a
sort of “reification” of the structural specification (SS), functional specification (FS),
and deontic specification (DS) (Fig. 6). This basic set accounts for: an OrgBoard arti-
fact —used to keep track of the structure of organisation in the overall; a GroupBoard
artifact —used to manage the life-cycle of a specific group; a SchemeBoard type —
used to support and manage the execution of a social scheme. Here we consider just a
core set, skipping most details that would make heavy the overall understanding of the
approach: the interested reader is forwarded on this technical report [15] to get further
details.

In the following we briefly describe the basic characteristics of these kinds of arti-
fact. In the description, the operations (commands) enlisted in artifact usage interface

adoptRole(R)
giveUpRole(R)
sendMsg(A,M)

GROUP-BOARD

commitMission(M)
setMissionState(M,S)

setGoalState(G,S)

SCHEME-BOARD

enterOrg
leaveOrg

removeGroup(G)

ORG-BOARD

registerScheme(S,SB)
removeScheme(S)

registerGroup(G,GB)

current-groups

current-schemes

scheme-state

missions-committed
role-assignmnentsorg-spec

Fig. 6. Basic kinds of artifacts in ORA4MAS, with their usage interface, including operations
and observable properties.

are abstractly described by a name with input parameters, followed (optionally) by a
set of the observable events possibly generated by the operation execution (only events
significant for artifact specific functionalities are considered, skipping those generated
by default by the artifact). Observable properties are represented just by a name, which
corresponds to the name of the property.

A simple abstract model for the OrgBoard artifact is depicted in Fig. 6 (left). The
usage interface is composed by operations to:

– register / de-register a new group: registerGroup(G,GB), removeGroup(G)—where
G is an identifier for a group and GB is the identifier of the related group board
artifact;

– register / de-register a new scheme: registerScheme(S,SB), removeScheme(S)
where S is the identifier for a schema and SB is the identifier of the scheme board.

Among the observable properties: list of current groups; list of current schemes; and
the organisation specification (including SS, FS, DS).Generally speaking, the observ-
able properties of the artifact make it possible —for agents observing an OrgBoard—to
monitor and be aware of which are the schemes and groups created. Also, this artifact
can be inspected to know which are the SS, FS, DS currently adopted in the organisa-
tion.

The GroupBoard artifact type (see Fig. 6, center) is instantiated upon a specific SS,
and provides functionalities to manage a group in terms of set of available roles and
agents participation, according to the specific structure and strategy specified in the SS.
The usage interface accounts for the following operations:

– adopt a new role: adoptRole(R):{role adoption ok,role adoption failed}, where R is
the identifier for a role;

– give up a role: giveUpRole(R):{role giveup ok,role giveup failed};

– sending a message to a specific agent or all the agents part of the group:
sendMsg(A,M), sendMsg(M), where A is the identifier for the receiver agent, m is
the message content.

Among the observable properties, we have only the role assignments. By observing a
GroupBoard artifact, an agent can thus monitor and be aware of the role-agent assign-
ments inside the group.

The GroupBoard interprets the structural specification and maintains a consistent
state of the group so that some important organisational constraints are not violated
— the remaining constraints are enforced by organisational agents. For instance, when
some agent asks for a role adoption in the group, the GroupBoard ensures that: (1) the
role belongs to its group specification; (2) the number of players is lesser or equals than
the maximum number of players defined in the group’s compositional specification; (3)
each role ρi that the agent already plays is specified as compatible with the new role.

The SchemeBoard artifact type (see Fig. 6, right) is instantiated upon a specific
FS and DS, and provides functionalities to manage the execution of a social scheme,
coordinating the commitments to missions and the achievement of goals. It is essentially
a coordination artifact, automating the management of the dependencies between the
missions and the goals as described by the social scheme, and embedding such part of
the deontic specification concerning permissions and obligations for agents to commit
to missions. The usage interface provides commands to:

– commit to a mission: commitMission(M):{commit ok, commit failed}, where M is
the identifier for a mission;

– set mission state: setMissionState(M,S), where M is the identifier for a mission and
S can be either completed or failed;

– set goal state: setGoalState(G,S), where G is the identifier for a goal and S can be
either satisfied or impossible.

Fig. 7. Agent & Artifact.

Among the observable properties, we have: the
scheme dynamic state, that includes all the goals of the
scheme and their state; the list of the current missions
committed. By observing a SchemeBoard artifact, an
agent can monitor then the overall dynamics concern-
ing the scheme execution, and the be aware of which
missions are assigned to which agents, which goals are
achieved and which can be pursued.

Organisational Agents. The organisational agents
are essentially managers responsible to create and
manage the organisational artifacts described previ-
ously (Fig. 7). Such activities typically include observing artifacts dynamics and possi-
bly intervening, by changing / adapting artifacts or interacting directly with agents, so
as to improve the overall (or specific) organisation processes or taking some kinds of
decisions when detecting violations. As an example, one or multiple scheme managers
agents can be introduced, responsible of monitoring the dynamics of the execution of a

Fig. 8. Example of the construction and use of artifacts.

scheme by observing a specific SchemeBoard instance. The SchemeBoard artifact and
scheme manager agents are designed so as that the artifact allows for violation of the
deontic rules concerning the commitment of missions by agents playing some specific
roles, and then the decision about what action to take—after detecting the violation—
can be in charge of the manager agent.

The writing paper example. We consider that four agents (Tom, Eva, Joe, and Bob)
want to write a paper together using the proposed architecture described above. Among
these agents, Tom is also an organisational agent and thus it may create the OrgBoard
for the system. The creation of the OrgBoard is based on an organisational specification
where the roles, groups, schemes, etc. are defined as presented in the Sec. 4. The follow-
ing steps show how this system evolves until their goal of writing a paper is achieved
(depicted in Fig. 8):

1. Tom creates the GroupBoard based on the specification of Fig. 3. Tom then register
this new group in the OrgBoard using the registerGroup operation of the OrgBoard
artifact. To succeed in this registering, the new group should satisfy all constraints
defined in the OS (the group cardinality, for instance).

2. The new GroupBoard artifact is then perceived by all agents. While Tom decides to
adopt the role editor, Eva, Bob, and Joe decide to adopt the role writer in this group.
To adopt the role, they use the adoptRole operation of the GroupBoard. Again, this
operation may fail in case the agents do not fit in the requirements for the role
(cardinality of the role in the group, compatibility of roles, etc.). The reasons for
this role adoption is not covered here, but, for example, they may decide to become
a writer because Tom has invited them to enter into the group.

3. Tom creates the SchemeBoard to start the process of writing the paper and then reg-
isters it in the OrgBoard using the registerScheme operation. This artifact interprets
the specification of Fig. 4.

4. Once the scheme is created some obligations are activated and perceived by the
agents in the SchemeBoard. For instance, the agent Bob, that is playing the role
writer, is obligated to commit to the missions mCol and mBib (cf. Fig. 5) and thus
he decided to commit to both. Since the mission mBib has a cardinality constraint
that set the maximum number of commitments to one, the other agents are not
obligated to this mission anymore. They commit thus only to the mission mCol.
Tom, that plays editor, commits to mMan. We are assuming here that the agents
are obedient and always commit to their obligations and pursue their organisational
goals.

5. Having their missions, the agents can pursue the goals of the scheme. Initially only
the goals wp, fds, and wtitle can be pursued. These goals belongs to the mMan
mission, so only Tom has something to do, the others will wait him to achieve
these goals. To know which goal can be pursued and to set them as achieved, the
agents perceive the SchemeBoard and act on it using the setGoalState operation.
The SchemeBoard works therefore like a coordinating artifact.

In this example, the SchemeBoard simply shows the obligations for each agent and
which goals they should pursue. As an artifact, it is maintaining the current state of
the scheme execution. However, since it is not an agent, in case some agent does not
commit to a mission it should do or does not achieve some goal, the SchemeBoard
does nothing. An organisational manager agent, like Tom, must perceive this artifact
and decide what to do when some violation occurs.

Towards a Concrete Architecture. ORA4MAS concrete architecture is realised
on top of CARTAGO infrastructure, embedding algorithms used in S-MOISE+.
CARTAGO (Common ARtifact Infrastructure for AGent Open environment) is an
MAS infrastructure based on the A&A meta-model, providing the capability to define
new artifacts types, suitable API for agents to work with artifacts and workspaces,
and a runtime supporting the existence and dynamic management of working en-
vironments. CARTAGO is meant to be integrated with existing cognitive MAS
architectures and models / languages / platforms, so as to extend them to cre-
ate and work with artifact-based environments. A first example of integration with
the Jason agent programming platform is briefly described in [23]. CARTAGO is
available as open-source projects freely downloadable from the project web sites
(http://www.alice.unibo.it/cartago). The engineering of the first proto-
type of the ORA4MAS infrastructure upon CARTAGO is still a work in progress.

5 Conclusion and Perspectives

In this paper, we have followed the A&A approach to give back the power to agents
in an organisational approach. From this perspective, we have defined on the one hand
the organisational artifacts which encapsulate the functional aspects of an organisation
and organisation management, and on the other hand the organisational agents, which
encapsulated the decision and reasoning side of the management of organisations.

Although we already have some initial results of the ORA4MAS project, as those
presented in this paper, we had concretely evaluated the proposal for only one OML
(theMOISE+). The first future work of the project will therefore be an evaluation of its
application for different OMLs such as ISLANDER [6], OMNI [5],MOISEInst [11], or
AGR [8]. Following this broadest application we can then better compare our approach
with related works (e.g. [9]) and even others such as those managing the organisation
with communication acts (e.g. RICA-J [26]) or exploiting the environment to coordinate
and constrain the agents’ behaviour [30].

Other extensions aim at taking benefit of the uniform concepts used to implement
the environment and the organisation abstractions through the concept of artifacts. Such
an homogeneous conceptual point of view will certainly help us to bind both concepts
together in order to situate organisations in environment or to install the access to the en-
vironment into organisational models (in the same direction as proposed in [18]). Other
points of investigation are (1) the study of the reorganisation process of an MAS using
the ORA4MAS approach, (2) the impact of the reorganisation on the organisational
artifacts, and (3) the definition of a meta-organisation for the ORA4MAS, so that we
have special roles for organisational agents that give them access to the organisational
artifacts.

References

1. F. L. Bellifemine, G. Caire, and D. Greenwood. Developing Multi-Agent Systems with JADE.
Wiley, 2007.

2. O. Boissier, J. F. Hübner, and J. S. Sichman. Organization oriented programming from
closed to open organizations. In G. O’Hare, M. O’Grady, O. Dikenelli, and A. Ricci, editors,
Engineering Societies in the Agents World VII, volume 4457 of LNCS. Springer-Verlag, 2007.

3. J. Broersen, M. Dastani, J. Hulstijn, Z. Huang, and L. der van Torre. The BOID architecture:
conflicts between beliefs, obligations, intentions and desires. In J. P. Müller, E. Andre, S. Sen,
and C. Frasson, editors, Proceedings of the Fifth International Conference on Autonomous
Agents, pages 9–16, Montreal, Canada, 2001. ACM Press.

4. C. Castelfranchi, F. Dignum, C. M. Jonker, and J. Treur. Deliberate normative agents: Princi-
ples and architecture. In Proceedings of The Sixth International Workshop on Agent Theories,
Architectures, and Languages (ATAL-99), 1999.

5. V. Dignum, J. Vazquez-Salceda, and F. Dignum. OMNI: Introducing social structure,
norms and ontologies into agent organizations. In R. H. Bordini, M. Dastani, J. Dix, and
A. El Fallah-Seghrouchni, editors, Proceeding of the Programming Multi-Agent Systems
(ProMAS 2004), LNAI 3346, Berlin, 2004. Springer.

6. M. Esteva, J. A. Rodriguez-Aguiar, C. Sierra, P. Garcia, and J. L. Arcos. On the formal spec-
ification of electronic institutions. In F. Dignum and C. Sierra, editors, Proceedings of the
Agent-mediated Electronic Commerce, LNAI 1191, pages 126–147, Berlin, 2001. Springer.

7. M. Esteva, J. A. Rodrı́guez-Aguilar, B. Rosell, and J. L. AMELI: An agent-based middleware
for electronic institutions. In N. R. Jennings, C. Sierra, L. Sonenberg, and M. Tambe, editors,
Proceedings of the Third International Joint Conference on Autonomous Agents and Multi-
Agent Systems (AAMAS’2004), pages 236–243, New York, 2004. ACM.

8. J. Ferber and O. Gutknecht. A meta-model for the analysis and design of organizations in
multi-agents systems. In Y. Demazeau, editor, Proceedings of the 3rd International Confer-
ence on Multi-Agent Systems (ICMAS’98), pages 128–135. IEEE Press, 1998.

9. A. Garcı́a-Camino, J. Rodrı́guez-Aguilar, and W. W. Vasconcelos. A distributed architecture
for norm management in multi-agent systems. In this volume.

10. L. Gasser. Mas infrastructure: Definitions, needs and prospects. In Revised Papers from
the International Workshop on Infrastructure for Multi-Agent Systems, pages 1–11, London,
UK, 2001. Springer-Verlag.

11. B. Gâteau, O. Boissier, D. Khadraoui, and E. Dubois. Moiseinst: An organizational model for
specifying rights and duties of autonomous agents. In Third European Workshop on Multi-
Agent Systems (EUMAS 2005), pages 484–485, Brussels Belgium, December 7-8 2005.

12. I. A. Group. Ambient intelligence: from vision to reality. Technical report, IST, 2003.
ftp://ftp.cordis.europa.eu/pub/ist/docs/istag-ist2003 consolidated report.pdf.

13. J. F. Hübner, J. S. Sichman, and O. Boissier. A model for the structural, functional, and
deontic specification of organizations in multiagent systems. In G. Bittencourt and G. L.
Ramalho, editors, Proceedings of the 16th Brazilian Symposium on Artificial Intelligence
(SBIA’02), volume 2507 of LNAI, pages 118–128, Berlin, 2002. Springer.

14. J. F. Hübner, J. S. Sichman, and O. Boissier. S-MOISE+: A middleware for developing
organised multi-agent systems. In O. Boissier, V. Dignum, E. Matson, and J. S. Sichman, ed-
itors, Proceedings of the International Workshop on Organizations in Multi-Agent Systems,
from Organizations to Organization Oriented Programming in MAS (OOOP’2005), volume
3913 of LNCS. Springer, 2006.

15. R. Kitio. Organizational artifacts and agents for open multi-agent systems, Jun 2007. Master
Thesis report, Available at http://www.emse.fr/˜boissier/kitio.

16. M. Luck, P. McBurney, O. Shehory, and S. Willmott. Agent Technology: Computing as
Interaction (A Roadmap for Agent Based Computing). AgentLink, 2005.

17. B. A. Nardi. Context and Consciousness: Activity Theory and Human-Computer Interaction.
MIT Press, 1996.

18. F. Y. Okuyama, R. H. Bordini, and A. C. da Rocha Costa. Spatially distributed normative
objects. In G. Boella, O. Boissier, E. Matson, and J. Vázquez-Salceda, editors, Proceedings
of the Workshop on Coordination, Organization, Institutions and Norms in Agent Systems
(COIN), held with ECAI 2006, 28th August, Riva del Garda, Italy., 2006.

19. A. Omicini, S. Ossowski, and A. Ricci. Coordination infrastructures in the engineering of
multiagent systems. In F. Bergenti, M.-P. Gleizes, and F. Zambonelli, editors, Methodolo-
gies and Software Engineering for Agent Systems: The Agent-Oriented Software Engineering
Handbook, volume 11 of Multiagent Systems, Artificial Societies, and Simulated Organiza-
tions, chapter 14, pages 273–296. Kluwer Academic Publishers, June 2004.

20. A. Omicini, A. Ricci, and M. Viroli. Agens Faber: Toward a theory of artefacts for MAS.
Electronic Notes in Theoretical Computer Sciences, 150(3):21–36, 29 May 2006.

21. A. Omicini, A. Ricci, M. Viroli, C. Castelfranchi, and L. Tummolini. Coordination artifacts:
Environment-based coordination for intelligent agents. In AAMAS’04, volume 1, pages 286–
293, New York, USA, 19–23July 2004. ACM.

22. A. Ricci, A. Omicini, and E. Denti. Activity Theory as a framework for MAS coordination.
In P. Petta, R. Tolksdorf, and F. Zambonelli, editors, Engineering Societies in the Agents
World III, volume 2577 of LNCS, pages 96–110. Springer-Verlag, Apr. 2003.

23. A. Ricci, M. Viroli, and A. Omicini. A general purpose programming model & technology
for developing working environments in MAS. In M. Dastani, A. El Fallah Seghrouchni,
A. Ricci, and M. Winikoff, editors, 5th International Workshop “Programming Multi-Agent
Systems” (PROMAS 2007), pages 54–69, AAMAS 2007, Honolulu, Hawaii, USA, 15 May
2007.

24. J. Sairamesh, A. Lee, and L. Anania. Introduction. Commun. ACM, 47(2):28–31, 2004.
25. K. Schmidt and C. Simone. Coordination mechanisms: Towards a conceptual foundation

of CSCW systems design. International Journal of Computer Supported Cooperative Work
(CSCW), 5(2–3):155–200, 1996.

26. J. M. Serrano and S. Ossowski. A compositional framework for the specification of interac-
tion protocols in multi-agent organizations. In Proceedings of the Third European Workshop
on Multi-Agent Systems (EUMAS), Brussels, Belgium, December 7-8, 2005, pages 375–386,
2005.

27. T. Susi and T. Ziemke. Social cognition, artefacts, and stigmergy: A comparative analysis
of theoretical frameworks for the understanding of artefact-mediated collaborative activity.
Cognitive Systems Research, 2(4):273–290, Dec. 2001.

28. J. Vázquez-Salceda, H. Aldewereld, and F. Dignum. Norms in multiagent systems: some
implementation guidelines. In Proceedings of the Second European Workshop on Multi-
Agent Systems (EUMAS 2004), 2004.

29. D. Weyns and H. V. D. Parunak, editors. Journal of Autonomous Agents and Multi-Agent Sys-
tems. Special Issue: Environment for Multi-Agent Systems, volume 14(1). Springer Nether-
lands, 2007.

30. D. Weyns, H. V. D. Parunak, and F. Michel, editors. Environments for Multi-Agent Systems
II, Second International Workshop, E4MAS 2005, Utrecht, The Netherlands, July 25, 2005,
Selected Revised and Invited Papers, volume 3830 of Lecture Notes in Computer Science.
Springer, 2006.

