
Int. J. Accounting, Auditing and Performance Evaluation, Vol. 0, No. 00, 1–?? 1

Developing Organised Multi-Agent Systems
Using the Moise+ Model: Programming Issues
at the System and Agent Levels

Jomi F. Hübner,
Jaime S. Sichman, and
Olivier Boissier

GIA / DSC / FURB
Braz Wanka, 238
89035-160, Blumenau, Brazil
E-mail: jomi@inf.furb.br

LTI / EP / USP
Av. Prof. Luciano Gualberto, 158, trav. 3
05508-970 São Paulo, SP, Brazil
E-mail: jaime.sichman@poli.usp.br

SMA / G2I / ENSM.SE
158 Cours Fauriel
42023 Saint-Etienne Cedex, France
E-mail: Olivier.Boissier@emse.fr

Abstract: Multi-Agent Systems (MAS) has evolved towards the spec-
ification of global constraints that heterogeneous and autonomous agents
are supposed to follow when concerning open systems. A subset of these
constraints is known as the MAS organisation. This article describes
a set of computational tools that supports the development and the
programming of such systems. At the system level, it is provided a
middleware which ensures that all agents will follow the organisational
constraints. At the agent level, the AgentSpeak language is extended,
using Jason features, so that the agents can perceive and act upon the
organisation they belong.

Keywords: Multi-Agent Systems; MAS organisations; Engineering
organisations for MAS; Programming agents; Moise+; Jason .

Biographical Notes: Jomi Fred Hübner obtained his PhD at Univer-
sity of São Paulo, Brazil. The subject of his thesis was how to model the
reorganisation process of a MAS. Currently, he is a Professor at Univer-

Copyright c© 200x Inderscience Enterprises Ltd.Copyright c© 200x Inderscience Enterprises Ltd.

2 J. F. Hübner, J. S. Sichman, and O. Boissier

sity of Blumenau, Brazil. His research interests are MAS organisation
and tools to develop BDI-based systems.

Jaime Simão Sichman received his PhD at INPG, France. He is Asso-
ciate Professor at University of São Paulo, Brazil. His research interests
are related to agents’ organisational models, multi-agent based simula-
tion, and reputation and trust in MAS.

Olivier Boissier received his PhD at INPG Grenoble, France. He
is Professor at the ENS Mines of Saint-Etienne, France. His research
interests are related to organisational models, agents’ architectures, au-
tonomy and control.

1 Introduction

The autonomy of the agents is among the most important characteristics of
the concept of agency [39]. However, this autonomy can lead the overall system
to an undesired behaviour, since each agent does what it wants. This problem
may be solved by assigning an organisation to the system, as it is done in Human
Societies [32, 5]. In this context, the organisation can be considered as a set of
behavioural constraints that an agent adopts when entering into the system, ex-
pressed, for instance, by the role it will play [13, 25]. This approach is especially
useful in open Multi-Agent Systems (MAS) [22] where we do not know what sort
of agent will enter the system and therefore some constraints should be enforced
(this motivation for organised MAS is well described in [36, 11]).

The precise meaning of constraint used to describe an organisation is defined by
the underlying organisational model. According to Lemâıtre and Excelente [30], or-
ganisational models may be conceived along two main points of view: agent centred
and system centred. The former takes the agents as the ‘engine’ for the organisa-
tion. The organisation only exists inside the agents and an unified global view of
the organisation is possible only as an observable phenomena (Figure 1 (a) and
(b) depicts this view). For instance, in an ant colony, the organisational behaviour
constraints are somehow defined inside the ants or in the environment and we can
describe the organisation based on the collective emergent behaviour. The latter
point of view considers a different perspective: the organisation exists as an explicit
entity of the system and is not localised in the agents. The constraints are defined
by the designer (or by the agents themselves in self-organised systems) and the
agents are supposed to follow this organisation. For example, in a school there are
documents that explicitly state the academic organisation by means of its structure
and rules. Besides the observable organisation, in this point of view an observer
can also obtain a description of the explicit organisation. Of course, the explicit
and the observed organisations may differ.

These two points of view are concerned with the ‘place’ of the organisation in
the system. Taking an agent architecture perspective, there are other situations
regarding the agents’ capabilities to represent and reason about their organisation.
This extension to Lemâıtre and Excelente [30] work was proposed in [23]. In case
(a) of Figure 1 the agents are unable to represent the organisation, although some
external observer can see an emergent structure (e.g., an ant colony [14]). Indeed,
in all four cases of Figure 1 an observer can describe, using organisational concepts

Developing Organised Multi-Agent Systems Using the Moise+ Model 3

Figure 1 Four views of organisation.

and languages, what s/he is viewing. In case (b), the agents have an internal
representation of the organisation and follow this when deciding what to do (e.g.,
coalition formations [35]). The agents’ representation is obtained by perception,
communication, etc., since there is no explicit representation of the organisation
available. In case (c), the organisation exists but the agents do not reason about
it, they simply obey as if the organisational constraints were hardwired in them
(e.g., the MAS resulted from some AOSE methodologies where the agents’ code is
generated from specifications based on organisational concepts such as roles and
responsibilities [29]). Note that in all three cases, an agent has no organisational
autonomy, in (a) and (c) they do not decide whether to follow the organisational
constraints and in (b) the organisation is defined by the agent itself, so it can not
be autonomous regarding its own organisation. Finally, in case (d) – the focus of
this article – we have both an explicit representation of the organisation available
to the agents at runtime and agents able to read, represent, and reason about
the organisation. In these kinds of systems the agents can exert organisational
autonomy, since they may decide whether to follow the organisation or not.

In order to implement a system that follows organisational constraints, it is also
usual to take either an agent or system centred point of view (in [38] these views are
called agent and institutional perspectives). In the former, the focus is on how to
develop an agent reasoning mechanism that follows the organisation. In the latter,
the main concern is how to develop an MAS framework that ensures the satisfac-
tion of the organisational constraints. This latter is important in heterogeneous

4 J. F. Hübner, J. S. Sichman, and O. Boissier

and open systems, since the agent that enters the system may have an unknown
architecture. Of course these agents still need to have access to an organisational
representation that enable them to reason about it. However, any agent should
follow the organisation despite its organisational reasoning abilities. As far as we
know, the following available frameworks are system centred: Ameli [16] (based
on Islander), MadKit [21] (based on agr), karma [33] (based on steam), and
S-Moise+ [28] (based onMoise+).

Although these frameworks ensure that the agents will follow the organisational
constraints, they do not help the developer to program the agents to reason about
the organisation. We speculate that both approaches are needed to develop systems
like those in Figure 1 (d): (i) a framework to ensure organisational constraints and
(ii) an agent programming language that supports the agent decision making about
its organisation. The objective of this article is thus to present some software tools
to take one step towards the complete implementation of organised MAS. The
proposal is based on our previous work on the Moise+ organisational model.

This article is organised as follows: sections 2 and 3 present a comprehensive
description of the Moise+ model and accompanying tools that implement an or-
ganisational framework (item i above). These descriptions are the background
knowledge necessary to present the very contribution of this article in Section 4:
J -Moise+, which is an extension of the AgentSpeak language (initially proposed
in [34] and improved in [1, 2]). J -Moise+ allows developers to use this high level
BDI language to program organisation aware agents (item ii above). Our exten-
sion enables agents to perceive their organisation, especially its changes (e.g., a new
group is created, an agent has adopted a role), and to act upon it (e.g., create a
group, adopt a role). Finaly, before concluding, we compare our proposal to related
works in Section 5.

2 Moise+ Organisational Model

The organisational models are normally focused on a single dimension of the or-
ganisation. We have identified three main organisational dimensions in the models
proposed in the area. The first dimension concerns the functioning of the organi-
sation, for instance, the specification of global plans, the policies to allocate tasks
to agents, the coordination of plans execution, and the quality (time consumption,
resources usage, . . .) of a plan. In this dimension, the global purpose of the system
is better achieved because the MAS has a kind of organisational memory where the
best plans to achieve a global goal are stored (e.g., tæms [31], steam [37]). The
second dimension addresses a more static aspect of the organisation: its structure,
i.e., the roles, the relations among roles, the groups of roles, etc. In these models,
the global purpose is accomplished while the agents have to follow the obligations
and permissions that their roles entitle them (e.g., agr [17], Tove [18]). The third
dimension focus on the definition of high level norms that the agents should obey
(e.g., Islander [15], Opera [11]).

Figure 2 informally shows how an organisation could explain or constrain the
agents behaviour in the case where we consider an organisation as having both
structural and functional dimensions. In this figure, it is supposed that an MAS
has the purpose of maintaining its behaviour in the set P , where P represents

Developing Organised Multi-Agent Systems Using the Moise+ Model 5

structure
organisational

functioning
organisational

purpose
globalenvironment

agents’ behaviour space

S

E P

F

Figure 2 Organisation effects on an MAS.

all behaviours which draw the MAS’s global purposes. In the same figure, the
set E represents all possible behaviours in the current environment state. The
organisational structure is formed, for example, by roles, groups, and links that limit
the agents behaviour to those inside the set S , i.e., the set of possible behaviours
(E∩S) becomes closer to P . It is a matter of the agents, and not of the organisation,
to conduct their behaviours from a point in ((E ∩S)−P) to a point in P . In order
to help the agents in this task, the functional dimension contains a set of collective
plans that has been proved efficient in activating P behaviours. For example, in a
soccer team we can specify both the structure (defence group, attack group, and
some roles for each group) and the functioning of the team (e.g., rehearsed plays,
as a kind of predefined collective plans that have already worked well).

Having only one dimension is normally insufficient for a system. If only the
functional dimension is specified, the organisation has nothing to ‘tell’ the agents
when there is no plan to execute (the set of possible behaviours is outside the set
F of Figure 2). Otherwise, if only the organisational structure is specified, the
agents have to reason for a collective plan every time they want to play together.
Even with a small search space of possible plans (since the structure constrains the
agents’ options), this may be a hard problem. Furthermore, the plans developed
for a particular problem are lost, since there is no organisational memory to store
these plans. Thus, in the context of some application domains, if the organisation
model specifies both dimensions while maintaining suitable independence, then the
multi-agent system that follows such a model can be more effective in adjusting the
group behaviour to its purpose. Another advantage of having both dimensions is
that the agents have more information to reason about the others position in the
organisation and thus better interact with them.

The definition of a proper organisation for an MAS is not an easy task. On one
hand the organisation can be too flexible, and then it does not help the achieve-
ment of the global purpose. On the other hand, it can be too stiff, and then the
organisation removes any advantage of the agents’ autonomy. An initial adequate
organisation is normally set up by the MAS designer, however this may become not
suitable in dynamic environments. In this case the system should have the ability
to change or adjust its organisation.

6 J. F. Hübner, J. S. Sichman, and O. Boissier

The Moise+ organisational model is an attempt to join the three dimensions
into an unified model suitable for the reorganisation process [24, 25]. Its main
feature concerning the reorganisation process is the independence between the first
two dimensions, which are linked by the third one, the deontic dimension. The
MAS can therefore change its own structure without changing its functioning, and
vice versa [26]. In the next three subsections, we give a brief description of these
dimensions of the Moise+ model (a more detailed description is found in [25,
23]). For each dimension we have a corresponding specification that together forms
the Organisational Specification (OS). When a set of agents adopts an OS they
dynamically instantiate an Organisational Entity (OE). Once created, the OE’s
history starts and is run by events like the entering or exiting of other agents in the
OE, group creation, role adoption, mission commitment, etc.

2.1 Structural Dimension

The Moise+ Structural Specification (SS) is built in three levels: (i) the be-
haviours that an agent is responsible for when it adopts a role (individual level), (ii)
the acquaintance, communication, and authority links between roles (social level),
and (iii) the aggregation of roles in groups (collective level). Throughout this ar-
ticle, the analogy of a soccer team will be used to further illustrate and clarify the
model. Using the Moise+ notation, the team structure is specified in Figure 3 (a
more detailed definition is found in [25]).

At the individual level, the soccer team is defined by roles like goalkeeper, back
player, leader, attacker, coach, etc., and an inheritance relation among them. For
example, an agent playing as a goalkeeper inherits all properties of the roles back,
player, and soc. In Moise+ model, the adoption of roles is constrained by a
compatibility relation between roles. An agent can play two or more roles only if
they are compatible. For example, an agent playing the leader role is also allowed
to play the back role since these roles are compatible. Due to the role specialisation
(see the back-goalkeeper inheritance relation in Figure 3), the leader can also play
the goalkeeper role.

In the collective level, the players are divided into two groups (defence and
attack) which are sub-groups of the team. According to the composition relation of
Figure 3, the defence group specification is formed by three roles (goalkeeper, back,
and leader) and the maximum number of players in the group is constrained (one
goalkeeper, three backs, and one leader). It is also defined the minimum number
of players for the group to be considered well formed (one goalkeeper and three
backs). An agent playing leader is thus optional in the defence group. The leader
is also optional in the attack group. However, the group team must have one agent
playing leader to be considered well-formed. In this case, the composition has a
sub-group scope, meaning that the leader player must be in a sub-group (defence
or attack). Only after one agent is playing the role leader in a sub-group, may the
team be considered well-formed. More precisely, a team is well formed if it has one
defence sub-group, one attack sub-group, one or two agents playing the coach role,
one agent playing the leader role, and the two sub-groups are also well formed.

In the social level, the roles are linked. Each link has a source and target
role, for example, in Figure 3 it is specified that the coach (the source of the
link) has authority on all players (the target of the link) by means of an authority

Developing Organised Multi-Agent Systems Using the Moise+ Model 7

Figure 3 Soccer team structure using Moise+.

link. Although the authority link target is the role ‘player’, other roles inherit this
link. The same construction is used to increase the leader’s authority. Besides the
authority link, we can define communication and acquaintance links. Two agents
can communicate if they play roles with a communication link. The acquaintance
link is similar. In order to simplify the specification, for every authority link there
is an implicit communication link and for every communication link there is an
implicit acquaintance link.

A Moise+ group can have intra-group and inter-group links. The intra-group
links state that an agent playing the source role in a group gr is linked to all agents
playing the target role in the same group gr or in a sub-group of gr . The inter-
group links state that an agent playing the source role is linked to all agents playing
the target role in spite of which groups these agents belong to. For example, the
coach authority on player is an inter-group link (the coach and the player agents do
not need to belong to the same group), while the goalkeeper authority on backs is
an intra-group link (both agents must belong to the same group to ‘use’ this link).

2.2 Functional Dimension

The Functional Specification (FS) is composed by a set of schemes which repre-
sent how an MAS usually achieves its global (organisational) goals [7] stating how
these goals are decomposed (by plans) and distributed to the agents (by missions).

8 J. F. Hübner, J. S. Sichman, and O. Boissier

Figure 4 Soccer team attack scheme using Moise+.

The scheme can be seen as a goal decomposition tree where the root is a global goal
and the leafs are goals that can be achieved by the agents. Such decompositions
may be set either by the MAS designers who specify their expertise in the scheme
or by the agents that store their past (best) solutions. In the soccer example, sup-
pose the team has a rehearsed play as the one specified in Figure 4. This scheme
has three missions (m1, m2, and m3) – a mission is a set of coherent goals that an
agent can achieve. When an agent commits to a mission, it is responsible for all
this mission’s goals. For example, an agent committed to the mission m3 has the
goals ‘be placed in the opponent goal area’, ‘shoot at the opponent’s goal’, and, a
common goal, ‘score a goal’. Each mission also has a cardinality constraint in the
scheme that state how many agents should commit to it. In the soccer example,
all the three missions must be committed by only a single agent.

In a scheme, each non-leaf goal gi ∈ G (where G is the set of global goals) is
decomposed in sub-goals through plans using three operators:

• sequence “,”: the plan “g1 = g2, g3” means that the goal g1 will be achieved
if and only if the goal g2 and subsequently goal g3 are achieved;

• choice “|”: the plan “g1 = g2 | g3” means that the goal g1 will be achieved if
one, and only one of, the goals g2 or g3 is achieved; and

• parallelism “‖”: the plan “g1 = g2 ‖ g3” means that the goal g1 will be
achieved if both g2 and g3 are achieved, but they can be achieved in par-
allel.

2.3 Deontic Dimension

The deontic dimension addresses the autonomy of the agents by stating explic-
itly what is permitted and obligated in the organisation. The corresponding speci-
fication describes the roles’ permissions and obligations for missions. A permission
permission(ρ,m) states that an agent playing the role ρ is allowed to commit to

Developing Organised Multi-Agent Systems Using the Moise+ Model 9

the mission m. Furthermore, an obligation obligation(ρ,m) states that an agent
playing ρ ought to commit to m. For example, in the soccer team Deontic Spec-
ification (DS) (Table 1), three roles have the right to start the scheme presented
in Figure 4 because they have the permission for the scheme’s root missions. Once
the scheme is created, the other agents (playing back, middle, . . .) are obligated by
their roles’ deontic relations to participate in this scheme. These other agents ought
to pursue their mission’s goals, following the sequence specified by this scheme. For
instance, when a middle agent accepts the mission m2, it will try to achieve its goal
‘be placed in the middle field’ only after the goal ‘get the ball’ is already satisfied
by a back agent committed to the mission m1.

An important feature ofMoise+ is to avoid to link roles and goals directly. One
reason is to define sets of coherent goals (the missions) which are not reducible to the
concept of role. Roles are indirectly linked to missions by means of permissions and
obligations. Another reason is to add some independence between the functional
and the structural specifications.

2.4 Organisational Entity Dynamics

The dynamic of the OE consists of changes in its state, which is represented by
the following tuple:

〈os,A,GI,SI, gt , sg , st , ar , am, gs〉

where:

• os is the initial organisational specification which is composed by a set of
group specifications GT , a set of scheme specifications ST , a set of roles R,
a set of missions M, and a set of global goals G (although an OS has more
elements than these listed here, we have included only those directly linked
to the entity definition);

• A is the set of agents in the MAS;

• GI is the set of created groups;

• SI is the set of scheme instances;

• gt : GI → (GT × A) maps each group in GI to a group specification and an
owner agent; the owner agent is the creator of the group;

• sg : GI → P(GI) maps each group to its sub-groups;

Table 1 Soccer team deontic relations using Moise+.

role deontic relation mission

back permission m1

middle obligation m2

attacker obligation m3

10 J. F. Hübner, J. S. Sichman, and O. Boissier

• st : SI → (ST × P(GI)×A) maps each scheme instance to its specification,
responsible groups, and owner;

• ar : A 7→ P(R× GI) maps agents to the roles they are playing the groups;

• am : A 7→ P(M×SI) maps agents to the missions they are committed to in
the schemes;

• gs : SI × G 7→ {unsatisfied , satisfied , impossible} maps a goal to its state, all
goals are initially mapped to unsatisfied .

This section presents a brief general overview of the entity dynamics. More
details will be given in the next sections. The OE dynamics has the following
life-cycle:

1. Creation of the OE based on an organisational specification.

2. Running the OE, which consists of the life-cycle of its groups, schemes, and
agents.

3. Entity destruction to finish the organisation.

The life-cycle of a group has the following four steps:

1. Creation of the group based on a group specification. The agent which created
the group becomes the group’s owner.

2. Adoption of roles in the group by the agents.

3. When the group is well formed (i.e., it has a valid number of players for each
role), it can be responsible for the execution of schemes.

Being responsible for a scheme means that the agents in the group will be the
agents that commit to the missions of the scheme. For instance, if we have
two instances (s1 and s2) of the same scheme specification (sch1) and two
group instances (g1 and g2), such that st(s1) = (sch1, {g1}, α1) and st(s2) =
(sch1, {g2}, α2), only agents playing roles in g1 can (or have to) commit to
missions in s1 and only agents from g2 can (or have to) commit to missions
in s2. The set of schemes that a group is responsible for is thus important to
define the permissions and obligations for an agent (see Algorithm 1).

4. Removal of the group from the OE by the owner. In order to be removed, a
group must have (i) no agents playing any role in it, (ii) no sub-groups, and
(iii) no responsibility for any scheme.

The life-cycle of a scheme is formed by the following steps:

1. Creation of the scheme based on a scheme specification by an agent that
will become its owner. The owner must have permission for a mission which
includes the root goal.

2. Assignment to responsible groups.

3. Commitment of some agents.

Developing Organised Multi-Agent Systems Using the Moise+ Model 11

4. When the scheme is well formed (i.e., there are agents committed to all mis-
sions), the goals can be pursued by the committed agents.

5. The scheme is finished when the root goal is set as satisfied or impossible.

6. When no agent is committed to the scheme, it can be removed from the OE
by its owner.

Finally, the life-cycle of an agent inside the entity is:

1. Entering in the system.

2. Adoption of roles in groups, this adoption is constrained by the role’s cardi-
nalities and compatibilities.

3. Commitment to missions in schemes, this commitment is constrained by the
deontic specification (for example, an agent can commit only to permitted
missions).

4. Removal of commitments. This removal is also constrained, an agent can re-
move its commitments only if its obligations were already fulfilled. If an agent
does not fulfil its obligations, the system should not allow it to uncommit.

5. Removal of roles if it has no more commitments.

6. Leaving the system, if the agent has no more roles to play.

3 S-Moise+ Organisational Middleware

S-Moise+ is an open source implementation of an organisational middleware,
based on a system centred view that follows theMoise+ model. This middleware,
initially described in [28], is the interface between the agent and the system levels,
providing access to the communication level, to the information about the current
state of the organisation (created groups, schemes, roles assignments, etc.), and
allowing the agents to change the organisation entity and specification (see Fig-
ure 5). Of course these changes are constrained to ensure that the agents respect
the organisational specification.
S-Moise+ has two main components: an OrgBox API that agents use to access

the organisational layer (this component is detailed in Section 3.2) and a special
agent called OrgManager. This latter agent stores the current state of the OE and
maintains its consistency during its life-cycle, i.e., it ensures organisational con-
straints. The OrgManager receives messages from the agents’ OrgBox asking for
changes in the OE state (e.g., role adoption, group creation, mission commitment).
The messages’ contents are organisational actions, detailed in Section 3.1. The
OrgManager performs the actions only if the request does not violate the organisa-
tional constraints. For example, if an agent wants to adopt a role ρ2 but it already
plays a role ρ1 which is not compatible with ρ2, the adoption of ρ2 must be denied.

12 J. F. Hübner, J. S. Sichman, and O. Boissier

3.1 Organisational Actions

The OE is changed by organisational actions encapsulated in messages sent
by the agents to the OrgManager. Each action has arguments, preconditions and
effects (Table 2 summarises these actions). In this article we describe only some of
the actions using the soccer example, a full formalisation can be found in [23] and
also on http://moise.sourceforge.net.

As an example, let’s suppose that we have an OE where the following actions
have already been performed by an agent identified by α:

Figure 5 S-Moise+ components.

Table 2 S-Moise+ main organisational actions.

Action Description and some preconditions

create group(gt [, gi]) Creates a new group, or a sub-group of gi if gi argu-
ment is informed, based on specification gt (gt ∈ GT
and gi identifies an instance group).

remove group(gi) Removes the group identified by gi .

create scheme(st, gis) Creates a new scheme instance from specification st
(st ∈ ST), gis (gis ⊆ GI) is a set of groups that are
responsible for the new scheme execution.

remove scheme(si) removes the scheme si from the OE; to be removed,
the root goal of the scheme must be satisfied or im-
possible and no agent is still committed to it.

set goal state(α, si, g, s) The goal g of the scheme si is set as s (s ∈
{satisfied , impossible}) by the agent α (α must be
committed to a mission that includes g).

adopt role(α, ρ, gr) The agent α adopts the role ρ in the group gr .
remove role(α, ρ, gr) The agent α gives up the role ρ in the group gr (this

role missions must be finished).
commit mission(α, m, si) The agent α commits to the mission m in the

scheme si .
finish mission(α, m, si) The agent α finishes its mission m in the scheme si

(all the mission’s goal must be satisfied or declared
impossible).

Developing Organised Multi-Agent Systems Using the Moise+ Model 13

• create group(team): a group, identified hereafter by grt , was created from
the team specification defined in Figure 3;

• create group(defence, grt): a group, identified hereafter by grd , was cre-
ated from the defence specification as a sub-group of grt ;

• create group(attack, grt): a group, identified hereafter by gra , was cre-
ated from the attack specification as a sub-group of grt ; with these three
groups created, the state of the entity is GI = {grt , grd , gra}, gt =
{grt 7→ (team, α), grd 7→ (defence, α), gra 7→ (attack, α)}, and sg = {grt 7→
{grd , gra}} (other components of the state remain empty);

• create scheme(side attack, {grt}): an instance of the side attack spec-
ification (Figure 4), identified by schsa , was created and the agents of the
group grt are responsible for this scheme’s missions; the state of the entity is
SI = {schsa} and st = {schsa 7→ (side attack, {grt}, α)}.

After the execution of these actions, the groups are not well formed, since there
is no agents playing their roles. The defence group, for instance, needs one agent
playing goalkeeper. If an agent α wants to adopt the role ρ in the group gr ,
it must send the action adopt role(α, ρ, gr) to the OrgManager.a As every
organisational action in S-Moise+, the role adoption action has some preconditions
to ensure that no organisational constraint is violated:

1. the role ρ must belong to gr ’s group specification;

2. the number of ρ players in gr must be lesser than the maximum number of ρ
players defined in the gr ’s compositional specification;

3. for all roles ρi that α already plays, the roles ρ and ρi must be intra-group
compatible in the gr ’s group specification;

4. for all roles ρi that α already plays in groups other than gr , the roles ρ and
ρi must be inter-group compatible.

The effect of adopting a role is a new mapping (α 7→ (ρ, gr)) in the ar function.
Notice that a role is always adopted inside a group of agents, since role is a relational
concept [6].

In our example, let’s suppose that eleven agents have already adopted roles such
that the three groups are well formed and that the goal ‘get the ball’ of the scheme
schsa is satisfied. Among these agents, ‘Lucio’ has adopted the role middle in the
grd group (since grd is a sub-group of grt , Lucio also belongs to grt). Is this agent
following its organisational obligations? No, because it plays a middle role in the
group that created the side attack scheme and this role obligates it to commit to
mission m2 (Algorithm 1 describes how to get all missions an agent is obligated to).
In order to be organisation compliant, Lucio commits to the m2 mission through
the action commit mission(‘Lucio’, m2, schsa). From the OrgManager point
of view, this action also has some preconditions:

1. the scheme schsa must not be finished yet;
aThe reasons for an agent to adopt a role is not covered by theMoise+ model, for more details

regarding motivations for role adoption, the reader is referred to [20, 17, 10, 9].

14 J. F. Hübner, J. S. Sichman, and O. Boissier

2. the agent must play a role in the scheme’s responsible groups;

3. this role must be permitted or obligated to the mission, as defined in the DS.

The action effect is so that the function am is changed to add the mapping
‘Lucio’ 7→ (m2, schsa).

After its commitment, Lucio will likely pose the question: which are the global
goals I have to achieve? In the case of its m2 goals, only the goal ‘be placed in the
middle field’ is permitted (see Figure 4). Its second goal ‘go to the opponent back
line’ is not permitted by the current state of schsa . This second goal should be
pursued only after another global goal is satisfied, since it depends on ‘kick the ball
to’ achievement. Algorithm 2 is used in the OrgManager implementation to identify
permitted global goals. Thus, while some goals are becoming satisfied (by the action
set goal state), others become permitted. When a goal becomes permitted, the
agents committed to it are informed by the OrgManager. This mechanism is very
useful to coordinate the agents in the scheme execution. The agent developer does
not need to program messages that synchronise the agents in the scheme execution.

In the S-Moise+ middleware, the OrgManager both constrains the agents’
actions and provides useful information for the agents’ organisational reasoning
and coordination (e.g., missions they are supposed to commit to and goals they
can pursue). The agents can get this information either by their OrgBox API
(presented in the next section) or by some other language resources (as shown in
the Section 4).

3.2 Agents’ OrgBox

The OrgBox is the interface the agents use to access the organisational layer and
thus the communication layer. When an agent intends to (i) change the organisa-
tional entity (adoption of a role, for instance), (ii) send a message to another agent,
or (iii) get the organisational entity state it has to ask this service for its OrgBox.
The OrgBox will therefore interact with the OrgManager or another agent using the
communication layer. We have developed a protocol in the communication layer
that is followed by the OrgManager and the OrgBox to exchange information and to

function getObligatedMissions(agent α)

all ← empty list // list of obligated missions
forall role ρ ∈ ar(α, gr) do

// gr is the group where ρ is being played
forall scheme si that gr is responsible to do

if si is not finished then
forall mission m in the scheme si do

if obligated(ρ,m) is in the deontic specification then
all ← append(all ,m);

return all ;
Algorithm 1: Algorithm to compute the missions an agent is obligated to.

Developing Organised Multi-Agent Systems Using the Moise+ Model 15

inform about organisational events. We can see the OrgBox as a component that
encapsulates this protocol. In current implementation, the communication layer
is implemented by Saci system (http://www.lti.pcs.usp.br/saci) – a KQML
compliant multi-agent communication infrastructure.

When an agent asks OrgManager for a ‘copy’ of the current state of the OE,
it will not receive exactly what is in the OrgManager’s memory. According to the
Moise+ model, an agent is allowed to know another agent α only in case it plays a
role ρ1, α plays ρ2, and these roles are linked by an acquaintance link. For example
the player role of Figure 3 has an acquaintance link to the coach role, thus an agent
playing this role is allowed to know the agents who are playing the coach role.
Indeed, since player is an abstract role, no agent will adopt it, however other roles
(like back, leader, etc.) inherit this acquaintance link from the player role. The
copy of the OE received by an agent contains therefore only information related to
acquainted agents.

The OrgBox interface is hence invoked by the agents to send messages, to ask
for information, ant to change the organisation. However, this service is also in-
voked by the OrgManager. When there is a state change of a scheme to which
some agent is committed, the OrgManager informs this agent’s OrgBox about the
new permissions, obligations, and goals it can pursue. The OrgBox then notifies
the agent about this event. Obviously, the OrgBox only informs the agent about
its organisational goals, it is a matter of the agent to achieve them (by plans, be-
haviours, etc.). The fact that is stated in the organisational system level is that
the agent is responsible for achieving such a goal.

3.3 Organisational Constraints

In the S-Moise+ middleware, we have two kinds of constraints: hard con-
straints and soft constraints. Hard constraints are those that must be enforced to
maintain the organisational entity in a consistent state. Since these constraints
can not be violated by any agent, they should be implemented in the middleware.
From all organisational constraints defined in the Moise+ model, the following
are hard constraints: (i) maximum number of role players in a group as defined

function isPermitted(scheme sch, goal g)

if g is the sch root then
return true;

else
g is in a plan that match ‘g0 = · · · g · · · ’;
if g is in a plan that match ‘g0 = · · · gi , g · · · ’ then

if gi is already satisfied then
return true;

else
return false;

else
return isPermitted(sch, g0);

Algorithm 2: Algorithm to verify permitted goals.

16 J. F. Hübner, J. S. Sichman, and O. Boissier

in the cardinality relation between a role and a group; (ii) role compatibility; (iii)
commitment allowed only to permitted or obligated missions; (iv) acquaintance and
communication links; and (v) creation of groups and schemes that are previously
specified.

Soft constraints are related to the deontic dimension and are not guaranteed
by the middleware, since the agents are supposed to autonomously decide to follow
them or not. These constrains can therefore be violated. A sanction system may be
used to enforce them; such a system is not covered in this paper, but one proposal
is presented in [19]. Among the Moise+ specification elements, the authority
link, the commitment to obligated missions, and the achievement of goals are soft
constraints. For example, if an agent is obligated to achieve some goal and is not
pursuing it, the middleware can not know it because it has no access to the internal
state of the agents. It could also be the case when the middleware may know that
the agent is not respecting the constraint (e.g., it is not committing to an obligated
mission), but there is no instruments to force the agent to commit. Soft constraints
are thus normally enforced in the agent reasoning capabilities.

An important feature of S-Moise+ middleware concerning open systems is that
it can ensure hard organisational constraints despite the architecture or language
used to develop the agents that use the middleware. The requirements to enter the
system are (i) to use the OrgBox to interact with the organisational level and (ii)
to understandMoise+ specifications.

Once this middleware constrains the agents’ behaviour based on a Moise+

organisational specification, we can see this specification as a kind of declarative
organisational programming language at the system level. Obviously, this specifica-
tion does not define the exact behaviour of the agents, as they remain autonomous
with respect to this organisation. However, as pointed out in the introduction,
in order to develop a multi-agent system we also need to program the agents: in
our proposal, we need to program agents which are organisation aware. The next
section will describe a proposal for organisational programming at the agent level.

4 J -Moise+ Organisational Agent

This section describes how an agent programming language can be used to make
both organisational information and actions available to agents. Among several
languages for agent programming, we have chosen the AgentSpeak language [34]
and its open source interpreter Jason (http://jason.sf.net [2, 3, 4]) to program
the organised agents. This choice was made because the language is based on the
well known BDI architecture and the interpreter is easily customised to include the
organisational support. This tool is called J -Moise+, since it joins Jason and
Moise+.

The J -Moise+ is built upon the S-Moise+ middleware, thus including the
OrgManager and OrgBox components. We have only extended the communica-
tion level options for the communication level available in Jason : Saci, Jade,
standalone, or any other infrastructure available in future releases. Figure 6 illus-
trates how these components are integrated into Jason . The J -Moise+ basically
offers to the AgentSpeak programmer (i) a set of actions to change the organisa-

Developing Organised Multi-Agent Systems Using the Moise+ Model 17

Figure 6 General view of the J -Moise+ architecture.

tion (Section 4.1) and (ii) produce some events so that agents may react to the
organisational changes (Section 4.2).

4.1 Organisational Actions

The syntax of AgentSpeak is based on the notion of plans. A plan is triggered
by some event and is guarded by some context, the syntax is

<event> : <context> <- <body>.

In the case where the event happens and the context holds, the plan’s body is
executed. For instance, the plan

+ball(X,Y) : i_am_near(X,Y) <- action1; action2; ...

is triggered when the agent perceives the ball at location X,Y (+ means that some-
thing was added in the belief base, as a perception in the above example). If the
agent can prove from its beliefs that i am near(X,Y) holds, the plan is selected for
execution and becomes an intention. Every intention is executed by performing the
actions of the body.

The set of available actions in Jason can be extended by means of internal
actions. We thus create a library of internal actions called jmoise (see Figure 6)
that implements all the organisational actions shown in Table 2. These actions
simply ask the OrgBox to send messages to the OrgManager. For example, the
following plan uses the internal action jmoise.create group to create a new group
based on the specification team:

18 J. F. Hübner, J. S. Sichman, and O. Boissier

+some_event : true <- jmoise.create_group(team).

4.2 Organisational Events

The Jason programmer may customise several components of the system. In
J -Moise+, we customise the agent architecture that is responsible to link the agent
to its environment and other agents. We particularly change the agent perception
to include organisational events. An agent thus perceives when a group is created,
when a scheme is started, when it has an organisational obligation, and so on.
For example, the creation of a new group is perceived by the agent with an event
like +group(<GrSpecId>, <GrInstanceId>). The agent can therefore handle this
event with plans like the following:

+group(attack,GId) : true <- jmoise.adopt_role(leader,GId).

In this example, whenever a group from specification attack is created, the agent
adopts the role leader in the group, this new group identification is the value of the
variable GId. Of course the plan context (true in above example) may constrain
the role adoption. For instance, in the following plan, the agent only adopts the
role in case the group creator is a friend and the agent is capable of being the leader
(the terms enclosed in square brackets form the set of annotations of the predicate):

+group(attack,GId)[owner(O)]
: my_friend(O) & capable(leader)
<- jmoise.adopt_role(leader,GId).

When, for example, a group is removed from the organisational entity, a be-
lief deletion event is generated (they start with -). In this case, the event is
-group(<GrSpecId>, <GrInstanceId>) and it can be handle by plans like:

-group(attack,GId) : true
<- .print("The attack group ",GId," was removed!").

The enumeration of some events provided by the organisational architecture is de-
scribed in Table 3. Among those events, an important one is +obligation(si,
m). This event is generated by the architecture whenever the agent should commit
to the mission m in the scheme instance si . The OrgManager notifies the agent
architecture about its obligation when it plays a role ρ in a group gi that is respon-
sible for the scheme si and this role is obligated to the mission m that belongs to si
(Algorithm 1 is used by OrgManager to identify obligations). In order to program
an agent that always commit to its obligations, we can simply add the following
plan into the agent code:

+obligation(Sch, Mission) : true
<- jmoise.commit_mission(Mission,Sch).

As in the previous example, the context of the plan can be used to constraint the
commitment, as in the following example:

+obligation(Sch, Mission)[group(GId)]
: .my_name(Me) &

Developing Organised Multi-Agent Systems Using the Moise+ Model 19

group(_,GId)[owner(O)] &
jmoise.link(authority, O, Me)

<- jmoise.commit_mission(Mission,Sch).

The example shows how the authority link can be enforced by the developer at the
agent level, since, as pointed out at the end of Section 3.3, at the system level we
can not guarantee that this kind of link is followed by the agents. In the above plan,
the agent commits to the mission only in case the owner of the group responsible
for the scheme has an authority link to the agent. The internal action jmoise.link
is used to check whether the owner has the link or not.

The agent architecture also generates goal achievement events (represented in
AgentSpeak by +!<goal>) when an agent’s organisational goals become permitted
in the current state of a scheme execution. The programmer can thus write plans
to deal with these events enabling the agent to achieve its organisational goals.
For example, when the goal ‘bePlacedInMiddleField’ is permitted, since the goal
‘getTheBall’ was satisfied (see Figure 4), the agent committed to this goal’s mission
will get the event +!bePlacedInMiddleField and a plan like the following may be
triggered:

+!bePlacedInMiddleField[scheme(Sch)] : true
<- <the actions to achieve the goal>;

jmoise.set_goal_state(
Sch,
bePlacedInMiddleField,
satisfied).

Note that when the goal is achieved, the agent has to notify the OrgManager. It
can thus change the state of the scheme execution and coordinate its execution.
If the goal is not achieved, the OrgManager should also be notified. For example,
we can use failure events, that were generated when some plan to achieve a goal
fails, to inform the OrgManager that some goal was not achieved (failure events are
represented by -!<goal>):

-!bePlacedInMiddleField[scheme(Sch)] : true
<- jmoise.set_goal_state(

Sch,
bePlacedInMiddleField,
impossible).

Figure 7 contains the AgentSpeak code of an agent that plays the back role in
the defence group. The creation of the groups of the team is performed by the coach
agent, so the corresponding code is not included in the Figure. The first plan of
this agent adopts the role back whenever a group defence is created. The second
plan starts an attack scheme (Figure 4) when the agent perceives the ballb. After
creating the scheme, it commits to the mission m1, since it is permitted to it (see
Table 1). The code has one plan for each organisational goal, however the actions
to achieve these goals were omitted. When the root goal of the scheme is satisfied,
the agent removes its commitment. Finally, when all agents have removed their
commitments in the scheme (the number of players is zero), the scheme is finished.

bThis code is merely illustrative and not the code for a really good player.

20 J. F. Hübner, J. S. Sichman, and O. Boissier

Table 3 J -Moise+ main organisational events.

Event Description

+/- group(gt,gi)[owner(α)] perceived by all agents when a gt group is
created (event +) or removed (event -) by the
agent α (gt ∈ GT and gi identifies an instance
group).

+/- scheme(st,si)[owner(α)] perceived by all agents when a st scheme is
created (+) or finished (-) by the agent α (st ∈
ST and si identifies an instance scheme).

+ scheme group(si,gi) perceived by gi players (the agents playing
role in gi) when their group becomes respon-
sible for the scheme si .

+ sch players(si, n) perceived only by the owner of the scheme
si when the number of players changes (the
number of players is the number of agents
committed to the scheme).

+ goal state(si, g, s) perceived by si players when the state of
the goal g has changed to the state s ∈
{satisfied , impossible}.

+/- play(α, ρ, gi) perceived by the agents of group instance gi
when an agent α adopts (event +) or remove
(event -) a role in the group.

+/- commitment(α, m, si) perceived by the si players (the agents com-
mitted to some mission in si) when an agent α
commits or removes a commitment to a mis-
sion m in the scheme si .

+ obligation(si, m)
[role(ρ), group(gi)] perceived by an agent when it has an organisa-

tional obligation for a mission m in the scheme
si . It has a role ρ in a group gi responsible
for a scheme si and this role is obligated to a
mission in the scheme.

+ permission(si, m)
[role(ρ), group(gi)] perceived by an agent when it has an organ-

isational permission for a mission m in the
scheme si . It has a role ρ in a group gi re-
sponsible for a scheme si and this role has
permission to the mission in the scheme.

Developing Organised Multi-Agent Systems Using the Moise+ Model 21

// when a defence group is created, adopt
// the role back of Figure 3 in it
+group(defence,GId) : true

<- jmoise.adopt role(back,GId).

// when I see the ball, creates the scheme of Figure 4
// with the team instance as responsible group
+see(ball)

: group(team,GId) // get the id of the team group
<- jmoise.create scheme(sideAttack, [GId]).

// when I has permission (see Table 1), commit to
// mission m1 of the scheme I have created
+permission(Sch, m1)

: .my name(Me) &

scheme(sideAttack,Sch)[owner(Me)]

<- jmoise.commit mission(m1,Sch).

/* Plans for the organisational goals of mission m1 */

+!getBall[scheme(Sch)] : true

<- <actions to bet the ball>;

jmoise.set goal state(Sch,getBall,satisfied).

+!goOpField[scheme(Sch)] : true

<- <actions to go to the opponent field>;

jmoise.set goal state(Sch,goOpField,satisfied).

+!kickBall[scheme(Sch)]

: // get the agent committed to m2
commitment(Ag, m2, Sch)

<- <actions to kick the ball to Ag>;

jmoise.set goal state(Sch,kickBall,satisfied).

// when the root goal of the scheme is satisfied,
// remove my missions
+goal state(Sch, G[root], satisfied) : true

<- jmoise.remove mission(Sch).

// removes the scheme if it has no more players
// and it was created by me
+sch players(Sch,0)

: .my name(Me) & scheme(, Sch)[owner(Me)]

<- jmoise.remove scheme(Sch).

Figure 7 AgentSpeak code of an agent that plays back.

22 J. F. Hübner, J. S. Sichman, and O. Boissier

Thanks to the customisation facilities of Jason and the AgentSpeak language,
it is quite simple to support the organisational programming at the agent level.
Although J -Moise+ enables the agent to perceive and act upon its organisation,
the problem of reasoning about the organisation and deciding whether to follow
the organisation or not is not covered in this article and remains for future work (a
good starting point is the proposal presented in [12]). However, J -Moise+ is one
step towards the solution of this problem in the context of BDI programming with
AgentSpeak.

5 Contributions and Future Work

In this article, we described a proposal towards declarative organisational pro-
gramming both at the agent level (with J -Moise+) and at the system level (with
S-Moise+). In our proposal, while a BDI based programming language can be
used to program those agents, a middleware ensures that the agents will follow
some organisational constraints. These constraints are declared by the developer (or
even by the agents themselves) according to an organisational model (theMoise+

model) and a point of view that enables the organisational autonomy. The organi-
sational model used in our proposal enables the declaration of MAS organisational
structure (role, groups, links), functioning (global goals, global plans, missions),
obligations, and permissions. The main features of this proposal are:

• S-Moise+ follows a system centred point of view where the organisational
specification is interpreted at runtime, it is not hardwired in the agents’ code;

• It is suitable for heterogeneous and open systems, since S-Moise+ is an
exogenous approach and therefore does not require a special agent architecture
or programming language;

• Despite this openness, a programming support is given in a particular high
level declarative language and architecture (AgentSpeak);

• It provides a synchronisation mechanism for scheme execution;

• It is suitable for reorganisation where the declaration of the organisation can
dynamically change. Since the organisational specification is available to the
agents and they follow it, the fact of simply changing the specification also
changes the agents behaviour (as in Figure 1 (d)). We have used this ap-
proach both to develop a soccer team that change itsMoise+ organisational
at runtime [26] and to specify contract dynamics in an electronic business
alliance [27].

Regarding related frameworks, our proposal at the system level is quite comple-
mentary to Ameli [16], MadKit [21], and karma [33]. Many implementation solu-
tions proposed by these frameworks were adopted in S-Moise+ (like the OrgBox
which is very similar to Teamcore proxy from karma and governor from Ameli).
Although the general implementation architectures are similar, the underlying or-
ganisational model and purpose are different. Ameli has a good support for com-
munication and protocols that S-Moise+ does not have. However, it does not
stress the structural and deontic dimensions like S-Moise+. MadKit is focused on

Developing Organised Multi-Agent Systems Using the Moise+ Model 23

the structural dimension and does not include the functional and deontic dimen-
sions. karma is concerned with both the structure and the functioning and has
an excellent support for coordination of global plan execution, however it lacks an
explicit deontic dimension.

Besides the contributions related to the underlying organisational model and the
middleware, as far as we known, the J -Moise+ architecture is the first proposal
to bring the organisational resources to the AgentSpeak programming language.
Of course, J -Moise+ is not related to open systems, since it is used only for
agents programmed with Jason . Nevertheless the set of tools described in this
article (S-Moise+ combined with J -Moise+) allows developers to implement an
organised MAS both at the system and agent levels.

As a future development, we intend to formalise the model and extend it with
new features like communication dimension, detection of violation of an agent obli-
gation, and a sanction system. We also plan to define an organisational meta level,
independently of the organisational model adopted, to create a (i) generic ontology
of organisational terms and (ii) to provide translation to and from a particular or-
ganisational model to other (an initial proposal is presented in [8]). At the agent
level, an internal reasoning mechanism that deals with an organisation specification
is the next step.

Acknowledgement

Most of the work described in this article was developed during the PhD of the first
author [23] and the research was supported by CNPq, CAPES, and FURB. The
second author is partially supported by CNPq, grants 304605/2004-2, 482019/2004-
2 and 506881/2004-0. The second and third authors are partially supported by
USP-COFECUB 98-04. We specially would like to thank to Rafael H. Bordini for
valuable suggestions in the integration ofMoise+ with Jason .

References

[1] Rafael H. Bordini, Ana L. C. Bazzan, Rafael O. Jannone, Daniel M. Basso,
Rosa M. Vicari, and Victor R. Lesser. AgentSpeak(XL): Efficient intention
selection in BDI agents via decision-theoretic task scheduling. In Cristiano
Castelfranchi and W. Lewis Johnson, editors, Proceedings of the First Inter-
national Joint Conference on Autonomous Agents and Multi-Agent Systems
(AAMAS’2002), pages 1294–1302. ACM Press, 2002.

[2] Rafael H. Bordini, Jomi F. Hübner, and Renata Vieira. Jason and the Golden
Fleece of agent-oriented programming. In Rafael H. Bordini, Mehdi Dastani,
Jürgen Dix, and Amal El Fallah Seghrouchni, editors, Multi-Agent Program-
ming: Languages, Platforms, and Applications, number 15 in Multiagent Sys-
tems, Artificial Societies, and Simulated Organizations, chapter 1. Springer,
2005.

[3] Rafael H. Bordini and Jomi Fred Hübner. BDI agent programming in AgentS-
peak using Jason. In Francesca Toni and Paolo Torroni, editors, Computational

24 J. F. Hübner, J. S. Sichman, and O. Boissier

Logic in Multi-Agent Systems: 6th International Workshop, CLIMA VI, Lon-
don, UK, volume 3900 of LNCS, pages 143–164. Springer, 2006.

[4] Rafael H. Bordini, Jomi Fred Hübner, and Michael Wooldrige. Programming
Multi-Agent Systems in AgentSpeak using Jason. Wiley, 2007.

[5] Jean-Pierre Briot and Yves Demazeau, editors. Principes et architecture des
systèmes multi-agents. Hermes, Paris, 2002.

[6] Cristiano Castelfranchi. Commitments: From individual intentions to groups
and organizations. In Toru Ishida, editor, Proceedings of the 2nd International
Conference on Multi-Agent Systems (ICMAS’96), pages 41–48. AAAI Press,
1996.

[7] Cristiano Castelfranchi. Modeling social action for AI agents. Artificial Intel-
ligence, (103):157–182, 1998.

[8] Luciano Coutinho, Jaime S. Sichman, and Olivier Boissier. Organizational
modeling dimensions in multiagent systems. In Jomi F. Hübner and Rafael H.
Bordini, editors, Proceeding of Sixth Iberoamerican Workshop on Multi-Agent
Systems (IBERAGENTS 2006). 2006.

[9] M. Dastani, B. van Riemsdijk, F. Dignum, and J.J. Meyer. A programming
language for cognitive agents: Goal directed 3APL. In Proc. of the First
Workshop on Programming Multiagent Systems: Languages, frameworks, tech-
niques, and tools (ProMAS03), volume 3067 of LNAI, pages 111–130, Berlin,
2004. Springer.

[10] Mehdi Dastani, Virginia Dignum, and Frank Dignum. Role-assignment in open
agent societies. In Jeffrey S. Rosenschein, Tuomas Sandholm, Wooldridge
Michael, and Makoto Yokoo, editors, Proceedings of the Second Interna-
tional Joint Conference on Autonomous Agents and Multi-Agent Systems (AA-
MAS’2003), pages 489–496. ACM Press, 2003.

[11] Maria Virǵınia Ferreira de Almeida Júdice Gamito Dignum. A model for or-
ganizational interaction: based on agents, founded in logic. PhD thesis, Uni-
versiteit Utrecht, 2003.

[12] Frank Dignum, David Kinny, and Liz Sonenberg. From desires, obligations
and norms to goals. Cognitive Science Quarterly, 2(3–4):407–430, 2002.

[13] Virginia Dignum and Frank Dignum. Modelling agent societies: Co-ordination
frameworks and institutions. In Pavel Brazdil and Aĺıpio Jorge, editors,
Proceedings of the 10th Portuguese Conference on Artificial Intelligence
(EPIA’01), LNAI 2258, pages 191–204, Berlin, 2001. Springer.

[14] Alexis Drogoul, Bruno Corbara, and Steffen Lalande. MANTA: New experi-
mental results on the emergence of (artificial) ant societies. In Nigel Gilbert
and Rosaria Conte, editors, Artificial Societies: the Computer Simulation of
Social Life, pages 119–221. UCL Press, London, 1995.

Developing Organised Multi-Agent Systems Using the Moise+ Model 25

[15] Marc Esteva, Juan A. Rodriguez-Aguiar, Carles Sierra, Pere Garcia, and
Josep L. Arcos. On the formal specification of electronic institutions. In
Frank Dignum and Carles Sierra, editors, Proceedings of the Agent-mediated
Electronic Commerce, LNAI 1191, pages 126–147, Berlin, 2001. Springer.

[16] Marc Esteva, Juan A. Rodŕıguez-Aguilar, Bruno Rosell, and Josep L. AMELI:
An agent-based middleware for electronic institutions. In Nicholas R. Jennings,
Carles Sierra, Liz Sonenberg, and Milind Tambe, editors, Proceedings of the
Third International Joint Conference on Autonomous Agents and Multi-Agent
Systems (AAMAS’2004), pages 236–243, New York, 2004. ACM.

[17] Jacques Ferber and Olivier Gutknecht. A meta-model for the analysis and
design of organizations in multi-agents systems. In Yves Demazeau, editor,
Proceedings of the 3rd International Conference on Multi-Agent Systems (IC-
MAS’98), pages 128–135. IEEE Press, 1998.

[18] Mark S. Fox, Mihai Barbuceanu, Michael Gruninger, and Jinxin Lon. An
organizational ontology for enterprise modeling. In Michael J. Prietula, Kath-
leen M. Carley, and Les Gasser, editors, Simulating Organizations: Compu-
tational Models of Institutions and Groups, chapter 7, pages 131–152. AAAI
Press / MIT Press, Menlo Park, 1998.

[19] B. Gâteau, O. Boissier, D. Khadraoui, and E. Dubois. Controlling an interac-
tive game with a multi-agent based normative organizational model. In Proc. of
the 2nd. International Workshop on Coordination, Organization, Institutions
and Norms in Agent Systems (COIN-ECAI 2006), 2006.

[20] Norbert Glaser and Philippe Morignot. The reorganization of societies of au-
tonomous agents. In Magnus Boman and Walter Van de Velde, editors, Multi-
Agent Rationality, LNAI 1237, pages 98–111, Berlin, 1997. Springer.

[21] Olivier Gutknecht and Jacques Ferber. The MadKit agent platform architec-
ture. In Agents Workshop on Infrastructure for Multi-Agent Systems, pages
48–55, 2000.

[22] Carl Hewitt. Open information system semantics for distributed artificial in-
telligence. Artificial Intelligence, (47):79–106, 1991.

[23] Jomi Fred Hübner. Um Modelo de Reorganização de Sistemas Multiagentes.
PhD thesis, Universidade de São Paulo, Escola Politécnica, 2003.

[24] Jomi Fred Hübner, Jaime Simão Sichman, and Olivier Boissier. Moise+:
Towards a structural, functional, and deontic model for MAS organization.
In Cristiano Castelfranchi and W. Lewis Johnson, editors, Proceedings of the
First International Joint Conference on Autonomous Agents and Multi-Agent
Systems (AAMAS’2002), pages 501–502. ACM Press, 2002.

[25] Jomi Fred Hübner, Jaime Simão Sichman, and Olivier Boissier. A model for the
structural, functional, and deontic specification of organizations in multiagent
systems. In Guilherme Bittencourt and Geber L. Ramalho, editors, Proceedings
of the 16th Brazilian Symposium on Artificial Intelligence (SBIA’02), volume
2507 of LNAI, pages 118–128, Berlin, 2002. Springer.

26 J. F. Hübner, J. S. Sichman, and O. Boissier

[26] Jomi Fred Hübner, Jaime Simão Sichman, and Olivier Boissier. Using the
Moise+ for a cooperative framework of MAS reorganisation. In Ana L. C.
Bazzan and Sofiane Labidi, editors, Proceedings of the 17th Brazilian Sympo-
sium on Artificial Intelligence (SBIA’04), volume 3171 of LNAI, pages 506–
515, Berlin, 2004. Springer.

[27] Jomi Fred Hübner, Jaime Simão Sichman, and Olivier Boissier. Specifying
E-Alliance contract dynamics through the MOISE+ reorganisation process. In
Ana Cristina Bicharra Garcia and Fernando Santos Osório, editors, Anais do
V Encontro Nacional de Inteligência Artificial (ENIA’2005), pages 434–443,
São Leopoldo, RS, Brasil, 2005. SBC. (best paper).

[28] Jomi Fred Hübner, Jaime Simão Sichman, and Olivier Boissier. S-Moise+: A
middleware for developing organised multi-agent systems. In Olivier Boissier,
Virginia Dignum, Eric Matson, and Jaime Simão Sichman, editors, Proceedings
of the International Workshop on Organizations in Multi-Agent Systems, from
Organizations to Organization Oriented Programming in MAS (OOOP’2005),
volume 3913 of LNCS. Springer, 2006.

[29] Carlos Iglesias, Mercedes Garrijo, and José Gonzalez. A survey of agent-
oriented methodologies. In Proceedings of the 5th International Workshop
on Intelligent Agents V : Agent Theories, pages 317–330, Heidelberg, 1999.
Springer-Verlag.

[30] Christian Lemâıtre and Cora B. Excelente. Multi-agent organization ap-
proach. In Francisco J. Garijo and Christian Lemâıtre, editors, Proceedings
of II Iberoamerican Workshop on DAI and MAS, 1998.

[31] M.V. Nagendra Prasad, Keith Decker, Alan Garvey, and Victor Lesser. Ex-
ploring organizational design with TÆMS: A case study of distributed data
processing. In Toru Ishida, editor, Proc. of the 2nd International Conference
on Multi-Agent Systems (ICMAS’96), pages 283–290. AAAI Press, 1996.

[32] Michael J. Prietula, Kathleen M. Carley, and Les Gasser, editors. Simulating
Organizations: Computational Models of Institutions and Groups. AAAI Press
/ MIT Press, Menlo Park, 1998.

[33] David V. Pynadath and Milind Tambe. An automated teamwork infrastructure
for heterogeneous software agents and humans. Autonomous Agents and Multi-
Agent Systems, 7(1–2):71–100, 2003.

[34] Anand S. Rao. AgentSpeak(L): BDI agents speak out in a logical computable
language. In Walter Van de Velde and John Perram, editors, Proc. of the
Seventh Workshop on Modelling Autonomous Agents in a Multi-Agent World
(MAAMAW’96), The Netherlands, number 1038 in Lecture Notes in Artificial
Intelligence, pages 42–55, London, 1996. Springer-Verlag.

[35] Jaime Simão Sichman, Rosaria Conte, Yves Demazeau, and Cristiano Castel-
franchi. A social reasoning mechanism based on dependence networks. In
Tony Cohn, editor, Proceedings of the 11th European Conference on Artificial
Intelligence, pages 188–192, 1994.

Developing Organised Multi-Agent Systems Using the Moise+ Model 27

[36] Carles Sierra, Juan Antonio Rodŕıguez-Aguilar, Pablo Noriega, Marc Esteva,
and Josep Llúıs Arcos. Engineering multi-agent systems as electronic institu-
tions. European Journal for the Informatics Professional, V(4), August 2004.

[37] Milind Tambe. Towards flexible teamwork. Journal of Artificial Intelligence
Reseearch, 7:83–124, 1997.

[38] J. Vázquez-Salceda, H. Aldewereld, and F. Dignum. Norms in multiagent sys-
tems: some implementation guidelines. In Proceedings of the Second European
Workshop on Multi-Agent Systems (EUMAS 2004), 2004.

[39] Michael Wooldridge. An Introduction to MultiAgent Systems. John Wiley and
Sons, 2002.

