
Background
Jason Team

Using Jason to Implement a
Team of Gold Miners

Rafael H. Bordini1, Jomi F. Hübner2, and
Daniel M. Tralamazza

1University of Durham (UK)
R.Bordini@durham.ac.uk

2University of Blumenau (Brazil)
jomi@inf.furb.br

3EPFL (Switzerland)
tralamazza@gmail.com

CLIMA Contest 2006 – Hakodate, Japan

Rafael Bordini and Jomi Hübner Jason Team of Gold Miners

R.Bordini@durham.ac.uk
jomi@inf.furb.br
tralamazza@gmail.com


Background
Jason Team

AgentSpeak
Jason

AgentSpeak(L)

Originally proposed by Rao (1996)
Programming language for BDI agents
Natural use of logic programming for reactive planning
systems
Influential in the design of other languages
However, originally only an abstract language; various
extensions were needed to make it a practical language

Rafael Bordini and Jomi Hübner Jason Team of Gold Miners



Background
Jason Team

AgentSpeak
Jason

Basic Architecture of an AgentSpeak agent

beliefs plans

interpreter

pe
rc
ep
tio
n action

Rafael Bordini and Jomi Hübner Jason Team of Gold Miners



Background
Jason Team

AgentSpeak
Jason

Basic AgentSpeak Syntax

Beliefs: predicateSymbol(ground,terms). (a literal)
Plans: event : context <- body.
Event:

+belief / -belief
+!goal / -!goal
+?testgoal / -?testgoal

Context: literal & . . .& literal
Body:

action: action(ground,terms).
achievement goal: !newGoal
test goal: ?belief
belief addition: +literal
belief deletion: -literal

Rafael Bordini and Jomi Hübner Jason Team of Gold Miners



Background
Jason Team

AgentSpeak
Jason

Example

+green patch(Rock) :
not battery charge(low) <-

?location(Rock,Coordinates);
!traverse(Coordinates);
!examine(Rock).

+!traverse(Coords) :
safe path(Coords) <-

move towards(Coords).

+!traverse(Coords) :
not safe path(Coords) <-

...

Rafael Bordini and Jomi Hübner Jason Team of Gold Miners



Background
Jason Team

AgentSpeak
Jason

Jason features (I)

An interpreter for an extended version of AgentSpeak
Distribution over the net using SACI
Implements the operational semantics of AgentSpeak
Some of its features are:

strong negation, so both closed-world assumption and
open-world are available
speech-act based inter-agent communication (and
annotation of beliefs with information sources)
handling of plan failures

Rafael Bordini and Jomi Hübner Jason Team of Gold Miners



Background
Jason Team

AgentSpeak
Jason

Jason features (II)

annotations on plan labels, which can be used by
elaborate (e.g., decision-theoretic) selection functions
support for developing Environments (in Java)
fully customisable (in Java) selection functions, trust
functions, and overall agent architecture (perception,
belief-revision, inter-agent communication, and acting)
a library of essential “internal actions”
straightforward extensibility by user-defined internal
actions, programmed in Java

Rafael Bordini and Jomi Hübner Jason Team of Gold Miners



Background
Jason Team

AgentSpeak
Jason

Language Extensions: Internal Actions

Internal actions can be defined by the user in Java

libName.actionName(. . .)

Standard (pre-defined) internal actions have an empty
library name

.print(term1, term2, . . .)

.myName(var)

Internal action for communication:

.send(r,ilf,pc)

where ilf ∈ {tell,untell,achieve,unachieve,
tellHow,untellHow,askIf,askOne,askAll,
askHow}

Rafael Bordini and Jomi Hübner Jason Team of Gold Miners



Background
Jason Team

AgentSpeak
Jason

Infrastructure

reasoning agClass

architecture agArchClass

infrastructure
tier

Centralised / Saci (KQML) / FIPA-ACL / RMI / ...

Agent

default 
implementaion

user
environment

Environment

infrastructure
tier

Rafael Bordini and Jomi Hübner Jason Team of Gold Miners



Background
Jason Team

AgentSpeak
Jason

Customising an Overall Agent Architecture

Users can define a specific
overall (rather than reasoning)
architecture for an agent
This is used to customise the way
the agent does perception of the
environment, receives
communication massages, does
belief revision, and acts in the
environment
Customised to connect to the
CLIMA server

Rafael Bordini and Jomi Hübner Jason Team of Gold Miners



Background
Jason Team

AgentSpeak
Jason

Jason is available
Open Source

under GNU LGPL at:

jason.sourceforge.net

(kindly hosted by SourceForge) Jason
by Gustave Moreau (1865)

Oil on canvas, 204 x 115.5 cm.
Musée d’Orsay, Paris.

c© Photo RMN. Photograph by
Hervé Lewandowski.

Rafael Bordini and Jomi Hübner Jason Team of Gold Miners

jason.sourceforge.net


Background
Jason Team

Design
Implementation

Quadrant allocation

Rafael Bordini and Jomi Hübner Jason Team of Gold Miners



Background
Jason Team

Design
Implementation

Wandering

Rafael Bordini and Jomi Hübner Jason Team of Gold Miners



Background
Jason Team

Design
Implementation

Gold handling

When a miner sees a piece of gold:
if free (not committed to another gold): pick it up and carry
to depot
if not free and not carrying gold (committed to another gold,
but has not collected it yet): give up gold last committed
and pick that one up
if already carrying gold: announce to others

When another agent announces more gold has been
found:

if free: bid based on Manhattan distance
if allocated by leader: go to gold, pick it up, and carry to
depot

Rafael Bordini and Jomi Hübner Jason Team of Gold Miners



Background
Jason Team

Design
Implementation

Prometheus Design: Overview

Rafael Bordini and Jomi Hübner Jason Team of Gold Miners



Background
Jason Team

Design
Implementation

Prometheus Design: Leader

Rafael Bordini and Jomi Hübner Jason Team of Gold Miners



Background
Jason Team

Design
Implementation

Prometheus Design: Miner

Rafael Bordini and Jomi Hübner Jason Team of Gold Miners



Background
Jason Team

Design
Implementation

Miner: gold handling I

+cell(X,Y,gold) : not carrying_gold & free
<- -free;

+gold(X,Y);
!init_handle(gold(X,Y)).

+cell(X,Y,gold)
: not gold(X,Y) & not carrying_gold & not free &

.desire(handle(gold(OldX,OldY))) &
<- +gold(X,Y);

.dropIntention(handle(gold(_,_)));

.broadcast(tell,gold(OldX,OldY));
!init_handle(gold(X,Y)).

+cell(X,Y,gold)
: not gold(X,Y) & not committed(gold(X,Y))
<- +gold(X,Y);

.broadcast(tell,gold(X,Y)).

Rafael Bordini and Jomi Hübner Jason Team of Gold Miners



Background
Jason Team

Design
Implementation

Miner: gold handling II

+!handle(gold(X,Y)) : true
<- .broadcast(tell, committedTo(gold(X,Y)));

!pos(X,Y);
!ensure(pick);
.broadcast(tell,picked(gold(X,Y)));
?depot(_,DX,DY);
!pos(DX,DY);
!ensure(drop);
-gold(X,Y);
!!choose_gold.

-!handle(G) : G
<- -G;

!!choose_gold.

Rafael Bordini and Jomi Hübner Jason Team of Gold Miners



Background
Jason Team

Design
Implementation

Miner: gold handling III

+!choose_gold : not gold(_,_) <- +free.
+!choose_gold : gold(_,_)

<- .findall(gold(X,Y),gold(X,Y),LG);
!calcGoldDistance(LG,LD);
.sort(LD,[d(Distance,NewG)|_]);
!!handle(NewG).

+!calcGoldDistance([],[]) : true <- true.
+!calcGoldDistance([gold(GX,GY)|R],

[d(D,gold(GX,GY))|RD])
: pos(IX,IY) & not committedTo(gold(GX,GY))
<- jia.dist(IX,IY,GX,GY,D);

!calcGoldDistance(R,RD).
+!calcGoldDistance([_|R],RD) : true

<- !calcGoldDistance(R,RD).

Rafael Bordini and Jomi Hübner Jason Team of Gold Miners



Background
Jason Team

Design
Implementation

Miner: moving (using A*)

+!pos(X,Y) : pos(X,Y) <- true.
+!pos(X,Y) : not pos(X,Y)
<- !next_step(X,Y);

!pos(X,Y).
+!next_step(X,Y)
: pos(AgX,AgY)
<- jia.getDirection(AgX, AgY, X, Y, D);

do(D).

Rafael Bordini and Jomi Hübner Jason Team of Gold Miners



Background
Jason Team

Design
Implementation

Leader: gold allocation

+bidFor(Gold,Distance)[source(M1)]
: bidFor(Gold,_)[source(M2)] &

bidFor(Gold,_)[source(M3)] &
M1 \== M2 & M1 \== M3 & M2 \== M3

<- !allocateMinerFor(Gold).

+!allocateMinerFor(Gold) : true
<- .findall(op(D,Ag),bidFor(Gold,D)[source(Ag)],LD);

.sort(LD,[op(_,CloserAg)|_]);

.broadcast(tell,allocatedTo(Gold,CloserAg)).

-!allocateMinerFor(Gold) : true
<- .print("could not allocate gold ",Gold).

Rafael Bordini and Jomi Hübner Jason Team of Gold Miners



Background
Jason Team

Design
Implementation

Conclusions

AgentSpeak is suitable for the problem:
elegant declarative solution
reactiveness to dynamic environment

Jason implementation provided good support for:
high-level communication
integration with the contest simulator
using external Java code (e.g., A*)

Difficulties:
new paradigm
some bugs in Jason (now mostly fixed!)
some difficulties with concurrent intentions
we did not do well in the scenarios with too much
uncertainty (but possibly lack of time/experience)

Rafael Bordini and Jomi Hübner Jason Team of Gold Miners


	Background
	AgentSpeak
	Jason

	Jason Team
	Design
	Implementation


