
Background
Jason Team

Using Jason to Implement a
Team of Gold Miners

Rafael H. Bordini1, Jomi F. Hübner2, and
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AgentSpeak(L)

Originally proposed by Rao (1996)
Programming language for BDI agents
Natural use of logic programming for reactive planning
systems
Influential in the design of other languages
However, originally only an abstract language; various
extensions were needed to make it a practical language
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Basic Architecture of an AgentSpeak agent

beliefs plans

interpreter

pe
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ep
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n action
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Basic AgentSpeak Syntax

Beliefs: predicateSymbol(ground,terms). (a literal)
Plans: event : context <- body.
Event:

+belief / -belief
+!goal / -!goal
+?testgoal / -?testgoal

Context: literal & . . .& literal
Body:

action: action(ground,terms).
achievement goal: !newGoal
test goal: ?belief
belief addition: +literal
belief deletion: -literal
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Example

+green patch(Rock) :
not battery charge(low) <-

?location(Rock,Coordinates);
!traverse(Coordinates);
!examine(Rock).

+!traverse(Coords) :
safe path(Coords) <-

move towards(Coords).

+!traverse(Coords) :
not safe path(Coords) <-

...
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Jason features (I)

An interpreter for an extended version of AgentSpeak
Distribution over the net using SACI
Implements the operational semantics of AgentSpeak
Some of its features are:

strong negation, so both closed-world assumption and
open-world are available
speech-act based inter-agent communication (and
annotation of beliefs with information sources)
handling of plan failures
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Jason features (II)

annotations on plan labels, which can be used by
elaborate (e.g., decision-theoretic) selection functions
support for developing Environments (in Java)
fully customisable (in Java) selection functions, trust
functions, and overall agent architecture (perception,
belief-revision, inter-agent communication, and acting)
a library of essential “internal actions”
straightforward extensibility by user-defined internal
actions, programmed in Java
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Language Extensions: Internal Actions

Internal actions can be defined by the user in Java

libName.actionName(. . .)

Standard (pre-defined) internal actions have an empty
library name

.print(term1, term2, . . .)

.myName(var)

Internal action for communication:

.send(r,ilf,pc)

where ilf ∈ {tell,untell,achieve,unachieve,
tellHow,untellHow,askIf,askOne,askAll,
askHow}
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Infrastructure

reasoning agClass

architecture agArchClass

infrastructure
tier

Centralised / Saci (KQML) / FIPA-ACL / RMI / ...

Agent

default 
implementaion

user
environment

Environment

infrastructure
tier
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Customising an Overall Agent Architecture

Users can define a specific
overall (rather than reasoning)
architecture for an agent
This is used to customise the way
the agent does perception of the
environment, receives
communication massages, does
belief revision, and acts in the
environment
Customised to connect to the
CLIMA server
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Jason is available
Open Source

under GNU LGPL at:

jason.sourceforge.net

(kindly hosted by SourceForge) Jason
by Gustave Moreau (1865)

Oil on canvas, 204 x 115.5 cm.
Musée d’Orsay, Paris.

c© Photo RMN. Photograph by
Hervé Lewandowski.
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Quadrant allocation
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Wandering
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Gold handling

When a miner sees a piece of gold:
if free (not committed to another gold): pick it up and carry
to depot
if not free and not carrying gold (committed to another gold,
but has not collected it yet): give up gold last committed
and pick that one up
if already carrying gold: announce to others

When another agent announces more gold has been
found:

if free: bid based on Manhattan distance
if allocated by leader: go to gold, pick it up, and carry to
depot
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Prometheus Design: Overview
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Prometheus Design: Leader
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Prometheus Design: Miner
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Miner: gold handling I

+cell(X,Y,gold) : not carrying_gold & free
<- -free;

+gold(X,Y);
!init_handle(gold(X,Y)).

+cell(X,Y,gold)
: not gold(X,Y) & not carrying_gold & not free &

.desire(handle(gold(OldX,OldY))) &
<- +gold(X,Y);

.dropIntention(handle(gold(_,_)));

.broadcast(tell,gold(OldX,OldY));
!init_handle(gold(X,Y)).

+cell(X,Y,gold)
: not gold(X,Y) & not committed(gold(X,Y))
<- +gold(X,Y);

.broadcast(tell,gold(X,Y)).
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Miner: gold handling II

+!handle(gold(X,Y)) : true
<- .broadcast(tell, committedTo(gold(X,Y)));

!pos(X,Y);
!ensure(pick);
.broadcast(tell,picked(gold(X,Y)));
?depot(_,DX,DY);
!pos(DX,DY);
!ensure(drop);
-gold(X,Y);
!!choose_gold.

-!handle(G) : G
<- -G;

!!choose_gold.
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Miner: gold handling III

+!choose_gold : not gold(_,_) <- +free.
+!choose_gold : gold(_,_)

<- .findall(gold(X,Y),gold(X,Y),LG);
!calcGoldDistance(LG,LD);
.sort(LD,[d(Distance,NewG)|_]);
!!handle(NewG).

+!calcGoldDistance([],[]) : true <- true.
+!calcGoldDistance([gold(GX,GY)|R],

[d(D,gold(GX,GY))|RD])
: pos(IX,IY) & not committedTo(gold(GX,GY))
<- jia.dist(IX,IY,GX,GY,D);

!calcGoldDistance(R,RD).
+!calcGoldDistance([_|R],RD) : true

<- !calcGoldDistance(R,RD).
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Miner: moving (using A*)

+!pos(X,Y) : pos(X,Y) <- true.
+!pos(X,Y) : not pos(X,Y)
<- !next_step(X,Y);

!pos(X,Y).
+!next_step(X,Y)
: pos(AgX,AgY)
<- jia.getDirection(AgX, AgY, X, Y, D);

do(D).
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Leader: gold allocation

+bidFor(Gold,Distance)[source(M1)]
: bidFor(Gold,_)[source(M2)] &

bidFor(Gold,_)[source(M3)] &
M1 \== M2 & M1 \== M3 & M2 \== M3

<- !allocateMinerFor(Gold).

+!allocateMinerFor(Gold) : true
<- .findall(op(D,Ag),bidFor(Gold,D)[source(Ag)],LD);

.sort(LD,[op(_,CloserAg)|_]);

.broadcast(tell,allocatedTo(Gold,CloserAg)).

-!allocateMinerFor(Gold) : true
<- .print("could not allocate gold ",Gold).
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Conclusions

AgentSpeak is suitable for the problem:
elegant declarative solution
reactiveness to dynamic environment

Jason implementation provided good support for:
high-level communication
integration with the contest simulator
using external Java code (e.g., A*)

Difficulties:
new paradigm
some bugs in Jason (now mostly fixed!)
some difficulties with concurrent intentions
we did not do well in the scenarios with too much
uncertainty (but possibly lack of time/experience)
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