
Interoperability in Multi-Agent Systems:
Lessons Learned

Marco Antonio Furlan de Souza1, Jomi Fred Hübner2 ?,
Jaime Simão Sichman2 ??, and Maria Alice Grigas Varella Ferreira1

1 Laboratório de Tecnologias de Software
{marco.souza, maria.alice.ferreira}@poli.usp.br

2 Laboratório de Técnicas Inteligentes
{jomi.hubner, jaime.sichman}@poli.usp.br

Escola Politécnica da Universidade de São Paulo
Av. Prof Luciano Gualberto, 158, tv.3

05508-900 São Paulo, SP

Abstract. Today there is a substantial number of Multi-Agent Systems
(MAS) tools available to the agent developer. Part of them, for reasons
of performance and development easiness, were built according to some
particular language/protocol, making difficult or hindering the commu-
nication of its agents with others developed with different languages and
protocols. Despite the increasing effort in the definition of standards for
agent communication protocols and languages, the heterogeneity in MAS
is a fact that is there to stay. This paper reports experiences of turning an
MAS tool, Saci, interoperable. The solution is based on a CORBA bridge
that enabled agents written in CORBA-mapped languages to communi-
cate with other native Saci agents, without changing its architecture or
programming style.

Keywords. Multi-Agent Systems Interoperability, Multi-Agent Systems
Tools and Programming, Multi-Agent Systems Architecture.

1 Introduction

Interoperability is still a great problem in Multi-Agent Systems (MAS) tools.
Besides the existence of standardization efforts as practiced by FIPA [3, 4, 5],
most of MAS tools available are not interoperable. This lack of interoperability
in MAS tools are in part due to design decisions and to the tools employed in
their construction. The former implies in an MAS tool with its own specific ar-
chitecture features like agent registration, advertisement capabilities, white and
yellow page services, agent communication language, to mention some, while
the last forces the agent designer to use the same implementation language and
protocol used in the original tool. Although creating agents in that manner has

? Supported by Universidade Regional de Blumenau and CAPES
?? Partially supported by CNPq, grant number 301041/95-4 and by CNPq/NSF

PROTEM-CC MAPPEL project, grant number 680033/99-8

benefits like obtaining good performance and easy use, it restricts the develop-
ment of agents to a single language and/or protocol, thus restricting the use of
the MAS tool.

This paper reports experiences with MAS interoperability in the design of a
CORBA interface to the Saci system [6, 7]. Saci (Simple Agent Communication
Infrastructure) is a tool that facilitates the task of programming communication
among distributed agents, providing an API to manipulate KQML messages and
tools useful in a distributed environment. Saci was written in Java with RMI
(Remote Method Invocation) as distributed communication protocol and this
fact forces the developer to use the same tools in his/her agents. To overcome
this problem, a CORBA bridge was implemented to the Saci tool. CORBA
is the acronym for Common Object Request Broker Architecture, an Object
Management Group (OMG), an open and vendor-independent architecture and
infrastructure enabling computer applications to work together over networks
[9]. It uses a standard protocol named Internet Inter-ORB Protocol (IIOP). So
applications can interoperate with a CORBA-based program from the same or
another vendor, on almost any other computer, operating system, programming
language, and network.

The use of a CORBA bridge to Saci tool preserved Saci’s original architecture
(easy to understand and to use) and maintained its style of writing agents,
enabling developers to write Saci agents in other languages (CORBA-mapped)
in a similar way as with Java/RMI.

This paper is organized as follows. In section 2 a brief view of interoperability
with CORBA is given, just to position concepts related to this technology; in
section 3, experiences are related with the development of the Saci’s CORBA
bridge, describing the original tool, the design decisions that guided the imple-
mentation, the CORBA interfaces, the implementation of the bridge and how
to write CORBA-Saci agents; finally, in section 4, a discussion on the pros and
cons of the implementation concludes the work.

2 Interoperability with CORBA

The first step toward the construction of any distributed system in CORBA
requires the definition of an interface of methods which will be executed by the
target remote objects [13, 11, 10]. In this phase, a text file describing the inter-
faces in the OMG Interface Definition Language (OMG IDL) must be written.
The OMG IDL is an independent declarative programming language, similar in
structure to C++, that supports the declarations of interfaces, methods, struc-
tured and basic types, as well as object-oriented concepts like inheritance, single
or multiple [13].

After the definition of the interfaces and with the help of an IDL compiler,
the IDL file is translated into the desired target language. It depends, of course,
on the support of the CORBA-mapped languages by the compiler. The IDL com-
piler generates source code for the two sides: the client side (also denominated
“stub”) and the server side (also denominated “skeleton”). The “skeleton” is

used as a basis for the server implementation – where the logic of the objects
is realized – and the “stub” contains code to facilitate the creation of client
applications. These source codes encapsulates all the necessary machinery to es-
tablish communication among clients of remote objects and its servers with the
IIOP protocol. To render this, each side must connect its objects on the ORB
(Object Request Broker) which handles the remote calls. Figure 1 summarizes
the functioning of a typical CORBA system [9].

Client

Dynamic
Invocation
Interface

IDL
Stubs

ORB
Interface

ORB CORE

Static IDL
Skeleton

Dynamic
Skeleton

Object
Adapter

Object Implementation

Fig. 1. The structure of object request interfaces

Figure 1 shows a client application that must be connected to its ORB in
order to communicate with an object server. Requests to remote objects are
made using its “stubs” (generated according to the target objects) and/or its
dynamic invocation interface (providing independence from the interface of the
target object). On the server side, besides the necessary existence of the ORB,
the static IDL skeleton handles the “up-calls” of objects methods, that is, their
execution. The dynamic skeleton does the same job as the static IDL skeleton,
but for dynamic method invocations from the clients. Finally, the object adapter
defines how an object is activated, that is, the process or thread architecture
that will be used to manipulate the objects on the server side. OMG has defined
a basic object adapter (BOA) and the portable object adapter(POA), to avoid
the proliferation of different adapters [9].

3 Case Study: The CORBA Interface to Saci

In this section the experiences with the implementation of a CORBA bridge to
the Saci system are discussed. First, a brief view of the Saci system is given,
explaining its architectural principles and usage. In sections 3.2, 3.3 and 3.5
the focus is on the design of the CORBA bridge to Saci, explaining the design
decisions that guided the project, the CORBA interfaces to Saci and finally how
to write CORBA-Saci agents with this architecture.

3.1 Saci System

Saci (Simple Agent Communication Infrastructure) is a tool that facilitates the
task of programming communication among distributed agents [6, 7]. The main
features provided by Saci are an API to manipulate KQML messages [8] like com-
posing, sending and receiving and tools to provide useful services in a distributed
environment like agent name service, directory service, remote launching, com-
munication debug, to name a few.

The internal behavior of Saci agents is simple, since it is based on an intuitive
society model. The agents have to enter a society; then, exchange messages and
announce skills; and at last, exit the society. Each society has one, and only,
facilitator – an agent with special features – in order to help agents to meet
each other. The facilitator has a list of agent identifications (and their respective
network address as a Java/RMI stub) and a list of skills available in the society
(and the respective set of agents that are able to perform those skills). Thus, to
enter (or exit) a society, an agent should ask permission to the society facilitator.
Once inside the society, Saci agents may exchange messages with each other
and/or announce skills to the facilitator.

To exchange messages, Saci agents have an entity called MBox (standing for
Mail Box) where the messages received for processing are queued. The MBox
interface provides several methods to select messages that arrives to the agent
(e.g., gets the first message in the MBox; gets the first message that matches a
pattern; waits for a message; wait for n messages that matches a pattern). When
an agent (A) asks its MBox to send a message (M) to another agent (B), A’s
MBox asks the facilitator for B’s localization. Once received, this localization
(the network address from the agent name service), the agent pair (A and B)
can communicate directly exchanging KQML messages (see Figure 2).

Mbox

host b

Ag2.SocA

Mbox

Mbox

host a

Ag3.SocB

Ag1.SocA

Mbox
white pages

(5)

(3) ask Ag1 location

Facilitator.SocA
host c

Ag2: host b

Ag1: host a

...

(2) register Ag2

(4) answer host a

(1) register Ag1

Fig. 2. Agent name service

The announcement of agent skills obeys the same process of entering the
society, but here the already set agent identification will be stored together with
its specific skills on a list called yellow-pages that will be used to provide the
directory service. When an agent needs someone to do a specific job, it asks the
facilitator for somebody who is able to perform it. After querying the yellow-
page list, the facilitator sends a list of agents back to the asker agent. By now
on, the agent will ask the services directly to the provider agent (see Figure 3).

MboxAg2.SocB

MboxAg1.SocB

Mbox(4)

(3) tell(Ag2)

(2) recommend−all(ask(X))

Facilitator.SocB

yellow pages

(1) advertise(ask(X))

...
Ag1=ask(X)

Fig. 3. Directory service

3.2 Design Decisions

The main design principle adopted in the construction of the CORBA interface
to Saci was the preservation of the Saci’s original architecture and interface.
This decision was taken due for two reasons: to preserve the Saci style of agent
programming and to keep using its services. Preserving the Saci style of pro-
gramming help Saci programmers to easily migrate to CORBA versions while
keeping using its services (agent name service, directory service, remote launch-
ing, communication debug and others) brings to CORBA agents a set of working
services, without the necessity to build them from scratch [6, 7].

A more convenient way to realize these ideas is by the way of a CORBA bridge
architecture, inspired by the Bridge Pattern from Gamma et al. [2]. Basically,
the bridge is implemented in a CORBA server that accepts connections and
invocations from CORBA clients and translates these invocations to real Saci’s
agents. For each CORBA agent in the server there is an associated Saci agent
that really do the job, so this agent serves like a proxy to CORBA agents’
requests [2, 12]. CORBA clients of this bridge can behave as Saci’s agent server
or clients.

In Figure 4 two Saci agents are created and then manipulated indirectly. They
are delegates of CORBA server agents which in its turn were created by CORBA
agent client programs (consider Java and C++). To clients, the behavior is the
same as they were accessing Saci agents directly. The special server object named
AgentManager is used in this architecture just to maintain a pool of agents and
to enable the client programs to request a reference to a CORBA agent [11]. This
is justified by the fact that each remote agent will receive connections in IIOP

CORBA Bridge
(server)

pool of agents

AgentM anager

CORBAAgent

CORBAAgent

SaciAgent
(proxy)

SaciAgent
(proxy)

CORBA Agent
Program

(Java)

CORBA Agent
Program

(C++)

IIOP

IIOP

RM I

Saci Society

SaciAgent

SaciAgent

SaciAgent

RM I

Fig. 4. The bridge architecture to Saci

protocol and dispatch the requests in RMI protocol, so there is a necessity to put
each agent in its own thread of execution, establishing a separate communication
channel for each remote agent. The bridge is a CORBA server written in Java,
so this enables the direct use of a Saci agent (the proxy) like an ordinary Saci
agent in the system.

3.3 Saci-CORBA Interfaces

Following the design principles described in section 3.2, a CORBA IDL file was
written to support the interfaces to Saci system. Two interfaces were defined:
CAgent and CAgentManager. The interface CAgent encapsulates all the func-
tions of a Saci agent [6] while the interface CAgentManager has just two func-
tions: reserveAgent, responsible for supplying agent references to clients and
releaseAgent, used by clients to free the agent reference after its use.

Additionally, due to type mismatch between CORBA types and Saci types
(which are Java types) two types were defined in the IDL file: CMessage and
CVector. The type CMessage is just an alias to the CORBA string type. It is
used to store KQML messages. In Saci, there is a type Message to store messages,
which is based on a Java Hashtable type. Since in CORBA this type does not
exist, all the KQML messages are manipulated by CORBA agents in a plain
string format. The type CVector represents a vector of strings, used to store
results from Saci functions like consultYP which returns a list of candidate
agents to a service.

3.4 The CORBA Bridge to Saci

To implement the CORBA bridge, it was necessary to use an IDL compiler
as well an ORB implementation. The choice was to use the EngineRoom ORB
(http://www.engroom.com) because its ORB and IDL compiler are free for non-
comercial use and have CORBA language mappings to C, C++, Java and Perl.

The bridge was implemented in Java and for the server side, the IDL compiler
has generated, among other files, the Java classes CAgent and CAgentManager.
These are just interfaces in Java, a direct translation from the IDL file, so they
must be implemented. To implement these classes, the two skeleton classes gen-
erated by the IDL compiler, CAgentImplBase and CAgentManagerImplBase,
were extended with appropriate code, implementing the logic of the objects.

The class CAgentImpl was written to implement the methods of the CAgent
class. This class was inherited from CAgentManagerImplBase class and inter-
nally has an object of type Agent, imported from the Saci package. This is the
proxy agent that will enter and communicate with other Saci agents in a society.
These relationships are shown in Figure 5 using an UML class diagram [1].

A gen t

(from saci)

CAg en t

+ en te rSoc()

+ en te rSocCo n fig ()

+ l eaveS oc()

+ i n i tA g ()

+ stopA g()

+ run ()

+ ge tNam e ()

+ ge tS ocie ty()

+ ask()

+ askT im eO ut()

+ rece ive ()

+ rece ive M atch ing M sg()

+ fo rwa rd ()

+ sen d()

+ sen dS ync()

+ b roa dca st()

+ nu m be rO fM essag es()

+ po l l i ng ()

+ po l l i ng M atch ing M sg()

+ ge tS ta tus()

+ co nsu l tYP ()

+ ad vertise ()

+ i sRu nn ing ()

+ d i sco nne ct()

+ p rin tM sg()

+ m sgT oS tr()

+ strT oM sg ()

(from CO RB AA ge n t)

<<I nt er fac e>>

_C A gen t Imp lBa se

- _ e r_o rb ()

+ _ ids()

+ _g e t_p o l icy()

+ _g e t_d om a in_ m an age rs()

+ _se t_ pol i cy_o verride ()

+ _g e t_ in te rface _de f()

+ _ th i s()

+ _CA gen tIm p lB ase()

+ i nvo ke()

(from CO RBA Ag en t)

CAg en tIm p l

+ CAg en tIm p l ()

- E nco de M sg()

- Deco de M sg()

+ en te rSoc()

+ en te rSocCo n fig ()

+ leaveS o c()

+ in i t Ag ()

+ stopA g()

+ run ()

+ ge tNam e ()

+ ge tS ocie ty()

+ ask()

+ askT im eO ut()

+ rece ive ()

+ rece ive M atch ing M sg()

+ fo rwa rd ()

+ sen d()

+ sen dS ync()

+ b roa dc ast()

+ nu m be rO fM essag es()

+ po l l i ng ()

+ po l l i ng M atch ing M sg()

+ ge tS ta tus()

+ co nsu l tYP ()

+ ad vertise ()

+ i sRu nn ing ()

+ d i sco nne ct()

+ p rin tM sg()

+ m sgT o Str()

+ strT oM sg ()

(f ro m CORB A A gen t)

-p roxyA ge n t

Fig. 5. Relationships of the CORBA CAgent classes

Note that, in Figure 5, each method of the CAgent class interface is imple-
mented in CAgentImpl class (the methods signatures were omitted for simplic-
ity). The implementation of each method is very simple because it delegates
its execution to the proxyAgent object. For example, to send messages to other
agents, a CORBA agent can use the method send which, in its turn, will execute
the method getMBox from a Saci agent object, indirectly retrieving a reference
to its mail box interface. With this reference it is possible to use the method
sendMsg, to send a new message to another Saci agent. This collaboration is

illustrated in Figure 6. All other methods of a Saci agent are manipulated this
way.

cor ba Age nt :

C Agent

proxy Agent :

Agent

1: getMBox ().sendMsg(new Message (m sg))

Fig. 6. The use of the proxy agent to send messages

The type mismatch between the CORBA type of message (CMessage) and
the expected type of sendMsg (Message) was solved by one of the constructors
of the class Message from Saci, which converts a plain string into a Message
type. In a reverse process, for example when using the receive method, its is
necessary to convert a Saci message to a plain string (CMessage). Fortunately,
the Message class in Saci has the method toString which converts its internal
format into a plain string, as indicated in Figure 7.

c orbaAgent :

C Agen t
prox y A gent :

Agent

2: getMBox (). rec eiv e(). toSt ring()

Fig. 7. The use of the proxy agent to receive messages

It is a task to client programs to parse KQML messages from the result of
receive. CORBA agent programs in Java can use the KQML parser class from
Saci to accomplish this. CORBA agent programs in other languages (like C++)
must use its own KQML parser.

Now, considering the implementation of CAgentManagerImpl class, it was
decided to use a Java vector as a pool of agents. The idea is to start the pool with
an initial number of agents (which incrementally increases). Client applications
can get agent references by the use of reserveAgent method, which connects the
reserved agents to the ORB. After using the objects, client applications should
release these objects to the ORB executing the Agent Manager’s releaseAgent
method. The relationships of the implementation classes of the CAgentManager
class are illustrated in Figure 8.

Finally, the CORBA bridge is implemented as a Java “daemon” which creates
and connects a CAgentManager object and waits for clients. It is implemented
as a Java class named CORBAServer which requires just one command-line
parameter that indicates the number of CAgent objects that must be initially
in the agent pool (if omitted, the number is five). In its implementation, the
CORBA bridge depends on a name server to locate and identify the objects

CAg en tM an age r

+ rese rve Ag en t()

+ re lea se Ag en t()

(from CO RB AA g en t)

<<In te rfa ce>>

_CA gen tMa nag erImp lBa se

- _e r_o rb ()

+ _ ids()

+ _ ge t_po l i cy()

+ _ ge t_d om a in_ m an ag ers()

+ _ se t_ po li cy _o v e rri de ()

+ _ get _i n te rfac e _de f()

+ _ thi s()

+ _ CA gen tM an a ger Imp lBa se()

+ i nvo ke ()

(from CO RBA Ag en t)

CAg en tM an age rIm p l

- n um O b jects : i n t = 0

+ CAg en tM an ag erIm p l ()

+ rese rve A gen t()

+ re lea se Ag en t()

(from CO RB AA ge n t)

V ecto r

(from u ti l)

-age n tPo o l

Fig. 8. Relationships of the CORBA CAgentManager classes

properly. In the tests, the tnameserv program from Sun’s Java 1.2 SDK were
used as a name server.

Basically, when this deamon is started, the following operations are executed:

1. ORB initialization;
2. CAgentManager object creation;
3. Connection of the CAgentManager object to the ORB;
4. Enter in a listening state - it waits for client invocations.

At step two, when the CAgentManager object is constructed, it creates a pool
of CAgent objects but does not connect them to the ORB. This connection just
occurs when client applications use its reserveAgent method. When a CAgent
object is reserved by some client application, it is ready to be used as a typical
Saci agent.

3.5 Writing Saci-CORBA Agents

Saci-CORBA agents are client applications that use the CORBA server to com-
municate with other Saci agents. These applications must use the “stubs” gener-
ated by the IDL file to get references to the CAgentManager object and CAgent
object. Basically, a CORBA agent program must execute these operations before
start using the CORBA agent:

1. Initialize its ORB;
2. Use the CORBA Name Service to get a CAgentManager object reference;
3. Invoke the reserveAgent methot of the CAgentManager object to get a

reference to CAgent object;
4. Use the CAgent object, implementing the agent program.

5. Release the CAgent object (optional).

Since steps one to three are common to all CORBA agent programs, a class
named CORBABasicAgent was written to facilitate the creation of CORBA
agent programs, available at moment in Java and C++. This class has aggregated
two references for objects CAgent and CAgentManager and its constructor do
all the ORB initialization and resolution of its aggregated object references.
All the methods available in CAgent interface are also available in the class
CORBABasicAgent, so the task to CORBA-Saci agent designers is just to inherit
from this class and implement the method run with the appropriate agent code
and create a program to call it [6]. The relationships among these classes are
shown in Figure 9.

M yA gen t

+ m a in ()

+ run ()

+ spe ci fi cOp e ra ti on1 ()

+ spe ci fi cOp e ra ti on2 ()

CAg e n t

(from CORB AA gen t)

<<In te rface>>

CA g en t M an ag er

(from CORB AA gen t)

<<In te rface >>

CORB AB asicAg en t

+ CO RB A B asicAg en t()

+ en te rS oc()

+ en te rS ocCon fig ()

+ l eav eS oc()

+ i n i tAg ()

+ sto p Ag()

+ run ()

+ ge tNa me ()

+ ge tS ocie ty()

+ ask()

+ askT im e O ut()

+ rece ive ()

+ rece iveM atc h ing M sg ()

+ fo rwa rd ()

+ se nd()

+ se ndS y nc()

+ b roa dcast()

+ nu m be rO fM essag es()

+ po l l i ng ()

+ po l l i ngM a tch ingM sg ()

+ ge tS t a tus()

+ c o nsu ltY P ()

+ ad vertise ()

+ i sRu nn i ng ()

+ d i scon nect()

+ p ri nt Msg()

+ m sg T oSt r()

+ strT oM sg()

(from CORB AA gen t)

a gen t

m an age r

Fig. 9. The CORBABasicAgent class

In Figure 9 a class named MyAgent, inherited from class CORBABasicA-
gent, represents a Java class that executes some agent program. The method
run implements the logic of the agent while the specifcOperation1 and
specifcOperation2 represent specific operations that this agent must execute.
The execution is properly done inside its main function. Agents in other pro-
gramming languages can be implemented in a similar way.

4 Conclusions

This work presented a non-intrusive technique based on a CORBA bridge to
make an MAS tool interoperable. The first lesson learned from the work is that,
although it is not an unique solution to MAS interoperability, our solution has
benefits like preserving the original architecture and programming. In fact, if
changes could be made to Saci architecture to enclose the CORBA interface, it
would imply in a complete rewriting of large parts of the system, forcing the
applications already existent to be rewritten.

Second, as a consequence of the use of CORBA, it is possible to create Saci
agents in languages other than the original, depending, of course, on the avail-
ability of CORBA-mapped languages and its ORB implementations. Since this
CORBA interfaces preserved the “look-and-feel” of the original system, it is
possible for developers in other programming languages to write Saci agents
following the same instructions present in the Saci programming manual [6].

Third, just small scale tests with CORBA agents and CORBA bridge were
conducted and the results were very satisfactory. No substantial performance
degradation of CORBA agents in relation to original Saci agents has been no-
ticed, and this results directly from the simplicity of the bridge implementation.

Now, some drawbacks of this implementation. First, it is a task to the de-
veloper to parse KQML messages from his/her Saci-CORBA agents. If using
Java, this is easily solved by the KQML parser from Saci but, in other lan-
guages, developers must use an existent KQML parser or create a new one. An
alternative solution to this problem is the inclusion of a CORBA interface to
Saci’s KQML parser, to be considered in future releases. Second, the CORBA
bridge implementation will require changes if, in the future, the interfaces of Saci
changes. If this occurs, it is necessary to go back to the IDL file and repeat all
the implementation process, so this solution is more advisable to stable architec-
tures, with minor changes. Finally, we have not tested this solution with ORBs
from other suppliers. This is important, because even in a open standard like
CORBA, incompatibilities can appear, consequently obfuscating the proposed
interoperability.

References

[1] Booch, G., Rumbaugh, J., Jacobson, I. The Unified Modeling Language User
Guide. Addison-Wesley Publishing Company, 1999.

[2] E. Gamma et al. Design Patterns - Elements of Reusable Object-Oriented Soft-
ware. Addison-Wesley Publishing Company, 1995.

[3] Foundation for Intelligent Physical Agents. FIPA Abstract Architecture Specifica-
tion. Geneva, Switzerland, 2000. http://www.fipa.org.

[4] Foundation for Intelligent Physical Agents. FIPA ACL Message Structure Speci-
fication. Geneva, Switzerland, 2000. http://www.fipa.org.

[5] Foundation for Intelligent Physical Agents. FIPA Agent Message Transport Ser-
vice Specification. Geneva, Switzerland, 2000. http://www.fipa.org.

[6] Hübner, J.F., Sichman, J.S. Saci Programming Guide. Technical report, Univer-
sidade de São Paulo, 2000.
http://www.lti.pcs.usp.br/saci/doc/programmingGuide.pdf.

[7] Hübner, J.F., Sichman, J.S. SACI: Uma Ferramenta para Implementação e Mon-
itoração da Comunicação entre Agentes. In Proceedings of the International
Joint Conference, 7th Ibero-American Conference on AI, 15th Brazilian Sympo-
sium on AI (Open Discussion Track), pages 47–56, São Carlos, 2000. ICMC/USP.
http://www.lti.pcs.usp.br/saci.

[8] Labrou, Y., Finin, T. A proposal for a new KQML specification. UMBC, Balti-
more, 1997.

[9] OMG. The Common Object Request Broker: Architecture and Specification. Ob-
ject Management Group, Inc., 1999.

[10] Orfali, R., Harkey, D., Edwards, J. Instant CORBA. John Wiley & Sons, Inc.,
1997.

[11] Orfali, R., Harkey, D., Edwards, J. Client/Server Programming with Java and
CORBA. John Wiley & Sons, Inc., 2nd. edition, 1998.

[12] Rohnert, H. The Proxy Design Pattern Revisited. In Vlissides, J.M.; Coplien,
J.O; Kerth, N.L., editor, Pattern Languages of Program Design, chapter 7, pages
105–117. Addison-Wesley Publishing Company, 1995.

[13] Siegel, J. CORBA 3 - Fundamentals and Programming. John Wiley & Sons, Inc.,
2nd. edition, 2000.

