
Environment Oriented Programming
with CArtAgO

Jomi F. Hübner

Federal University of Santa Catarina, Brazil

PPGEAS 2017 — UFSC

http://jomi.das.ufsc.br

Multi-Agent System (our perspective)

roleorg

mission

schema

ORGAMISATION
LEVEL

AGENT
LEVEL

ENDOGENOUS
ENVIRONMENT
LEVELwsp

artifact

network node

EXOGENOUS
ENVIRONMENT

agent

2

Back to the Notion of Environment in MAS

I The notion of environment is intrinsically related to the
notion of agent and multi-agent system
I “An agent is a computer system that is situated in some
environment and that is capable of autonomous action in this
environment in order to meet its design
objective” [Wooldridge, 2002]

I “An agent is anything that can be viewed as perceiving its
environment through sensors and acting upon the
environment through e↵ectors. ” [Russell and Norvig, 2003]

I Including both physical and software environments

4

Single Agent Perspective

ENVIRONMENT

feedback

actions

percepts

effectors / actuators

sensors

acti
on to

 d
o

PERCEPTION

DECISION

ACTION

I Perception
I process inside agent inside of attaining awareness or
understanding sensory information, creating percepts
perceived form of external stimuli or their absence

I Actions
I the means to a↵ect, change or inspect the environment

5

Multi-Agent Perspective

I In evidence
I overlapping spheres of visibility and influence
I ..which means: interaction

6

Why Environment Programming

I Basic level
I to create testbeds for real/external environments
I to ease the interface/interaction with existing software
environments

I Advanced level
I to uniformly encapsulate and modularise functionalities of the
MAS out of the agents
I typically related to interaction, coordination, organisation,
security

I externalisation
I this implies changing the perspective on the environment

I environment as a first-class abstraction of the MAS
I endogenous environments (vs. exogenous ones)
I programmable environments

7

Environment Programming: General Issues

I Defining the interface
I actions, perceptions
I data-model

I Defining the environment computational model &
architecture
I how the environment works
I structure, behaviour, topology
I core aspects to face: concurrency, distribution

I Defining the environment programming model
I how to program the environment

8

Basic Level Overview

actions

percepts

SIMULATED

WORLD

OR

INTERFACE

OR

WRAPPER TO

EXISTING

TECHNOLOGY

EXTERNAL

WORLD
(PHYSICAL OR

COMPUTATIONAL)

MAS ENVIRONMENT

REAL WORLD
(PHYSICAL OR

COMPUTATIONAL)

mimicking

Example:

JAVA

PLATFORMAGENTS

MAS

9

Advanced Level Overview

I Vision: environment as a first-class abstraction in
MAS [Weyns et al., 2007, Ricci et al., 2010b]
I application or endogenous environments, i.e. that
environment which is an explicit part of the MAS

I providing an exploitable design & programming abstraction to
build MAS applications

I Outcome
I distinguishing clearly between the responsibilities of agent and
environment
I separation of concerns

I improving the engineering practice

20

A&A and CArtAgO

Agents and Artifacts (A&A) Conceptual Model:
Background Human Metaphor

WHITEBOARD
artifact

ARCHIVE
artifact

COM. CHANNEL
artifact

TASK SCHEDULER
artifact

RESOURCE
artifact

CLOCK
artifact

BAKERY

workspace

agents can join
dynamically the workspace

33

A&A Basic Concepts [Omicini et al., 2008]

I Agents
I autonomous, goal-oriented pro-active entities
I create and co-use artifacts for supporting their activities

I besides direct communication

I Artifacts
I non-autonomous, function-oriented, stateful entities

I controllable and observable
I modelling the tools and resources used by agents

I designed by MAS programmers

I Workspaces
I grouping agents & artifacts
I defining the topology of the computational environment

34

A&A Programming Model Features [Ricci et al., 2007b]

I Abstraction
I artifacts as first-class resources and tools for agents

I Modularisation
I artifacts as modules encapsulating functionalities, organized
in workspaces

I Extensibility and openness
I artifacts can be created and destroyed at runtime by agents

I Reusability
I artifacts (types) as reusable entities, for setting up di↵erent
kinds of environments

35

A&A Meta-Model in More Detail [Ricci et al., 2010b]

Artifact

Operation

Observable
Event

generate

Agentuse

perceive

Workspace

Environment

Observable
Property

update

perceive

observe

Manual

has

consult

link

create

dispose

link

join

quit

36

Artifact Abstract Representation

OperationX(Params)

...

ObsPropName(Args)

...

SIGNALS

USAGE

INTERFACE

OBSERVABLE

PROPERTIES

OperationY(Params)

...

LINK

INTERFACE

OPERATIONS

37

A World of Artifacts

put

n_items 0

max_items 100

get

a bounded buffer

inc

count 5

reset

a counter

switch

state true

a flag

setTodo

last_todo ...

cancelTodo

next_todo check_plant

an agenda

...

GetLastTradePrice

a Stock Quote Web Service

availablestate

...wsdl

postEvent

registerForEvs

clearEvents

an event service

query

createTable

addRecord

a data-base

...

1001n_records

table_names ...

... ...

in

rd

out

a tuple space

38

A Simple Taxonomy

I Individual or personal artifacts
I designed to provide functionalities for a single agent use

I e.g. an agenda for managing deadlines, a library...

I Social artifacts
I designed to provide functionalities for structuring and
managing the interaction in a MAS

I coordination artifacts [Omicini et al., 2004], organisation
artifacts, ...
I e.g. a blackboard, a game-board,...

I Boundary artifacts
I to represent external resources/services

I e.g. a printer, a Web Service
I to represent devices enabling I/O with users

I e.g GUI, console, etc.

39

Actions and Percepts in Artifact-Based Environments
I Explicit semantics defined by the (endogenous)
environment [Ricci et al., 2010c]
I success/failure semantics, execution semantics
I defining the contract (in the SE acceptation) provided by the
environment

actions ! artifacts’ operation
the action repertoire is given by the dynamic set of operations
provided by the overall set of artifacts available in the workspace
can be changed by creating/disposing artifacts

I action success/failure semantics is defined by operation
semantics

percepts ! artifacts’ observable properties + signals
properties represent percepts about the state of the environment
signals represent percepts concerning events signalled by the
environment

40

Interaction Model: Use

op(Params)

ValuePropName

ValuePropName
...

...

AGENT

op(parms)
action

I Performing an action corresponds to triggering the execution
of an operation
I acting on artifact’s usage interface

41

Interaction Model: Observation

Belief base
(or alike)

PropName(Value).
PropName(Value).
... ValuePropName

ValuePropName
...

focus

AGENT
OBSERVER

I Agents can dynamically select which artifacts to observe
I predefined focus/stopFocus actions

43

Interaction Model: Observation

AGENT
OBSERVER

Belief base
(or alike)

PropName(Value).
PropName(Value).
... ValuePropName

ValuePropName
...

use

I By focussing an artifact
I observable properties are mapped into agent dynamic
knowledge about the state of the world, as percepts
I e.g. belief base

I signals are mapped as percepts related to observable events

44

CArtAgO

I Common ARtifact infrastructure for AGent Open
environment (CArtAgO) [Ricci et al., 2009]

I Computational framework / infrastructure to implement and
run artifact-based environment [Ricci et al., 2007c]
I Java-based programming model for defining artifacts
I set of basic API for agent platforms to work within
artifact-based environment

I Distributed and open MAS
I workspaces distributed on Internet nodes

I agents can join and work in multiple workspace at a time

I Role-Based Access Control (RBAC) security model

I Open-source technology
I available at https://github.com/CArtAgO-lang/cartago

47

https://github.com/CArtAgO-lang/cartago

Example 1: A Simple Counter Artifact

class Counter extends Artifact {

 void init(){
 defineObsProp("count",0);
 }

 @OPERATION void inc(){
 ObsProperty p = getObsProperty("count");
 p.updateValue(p.intValue() + 1);
 signal("tick");
 }
}

inc

count 5

I Some API spots
I Artifact base class
I @OPERATION annotation to mark artifact’s operations
I set of primitives to work define/update/.. observable
properties

I signal primitive to generate signals

50

Example 1: User and Observer Agents

!create_and_use.

+!create_and_use : true
 <- !setupTool(Id);
 // use
 inc;
 // second use specifying the Id
 inc [artifact_id(Id)].

// create the tool
+!setupTool(C): true
 <- makeArtifact("c0","Counter",C).

!observe.

+!observe : true
 <- ?myTool(C); // discover the tool
 focus(C).

+count(V)
 <- println(“observed new value: “,V).

+tick [artifact_name(Id,”c0”)]
 <- println(“perceived a tick”).

+?myTool(CounterId): true
 <- lookupArtifact(“c0”,CounterId).

-?myTool(CounterId): true
 <- .wait(10);
 ?myTool(CounterId).

OBSERVER(S)USER(S)

I Working with the shared counter

51

Action Execution & Blocking Behaviour

I Given the action/operation map, by executing an action the
intention/activity is suspended until the corresponding
operation has completed or failed
I action completion events generated by the environment and
automatically processed by the agent/environment platform
bridge

I no need of explicit observation and reasoning by agents to
know if an action succeeded

I However the agent execution cycle is not blocked!
I the agent can continue to process percepts and possibly
execute actions of other intentions

56

Summary

I environment as a first-class abstraction of the MAS
I endogenous environments (vs. exogenous ones)
I programmable environments

I encapsulate functionalities of the MAS out of the agents
I externalisation

64

	Environment Oriented Programming
	Fundamentals
	Existing approaches
	Artifacts and CArtAgO
	CArtAgO and Agents (E-A)
	Conclusions and wrap-up

