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Multi-Agent System (our perspective)
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Back to the Notion of Environment in MAS

I The notion of environment is intrinsically related to the
notion of agent and multi-agent system
I “An agent is a computer system that is situated in some
environment and that is capable of autonomous action in this
environment in order to meet its design
objective” [Wooldridge, 2002]

I “An agent is anything that can be viewed as perceiving its
environment through sensors and acting upon the
environment through e↵ectors. ” [Russell and Norvig, 2003]

I Including both physical and software environments
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Single Agent Perspective
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I Perception
I process inside agent inside of attaining awareness or
understanding sensory information, creating percepts
perceived form of external stimuli or their absence

I Actions
I the means to a↵ect, change or inspect the environment
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Multi-Agent Perspective

I In evidence
I overlapping spheres of visibility and influence
I ..which means: interaction
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Why Environment Programming

I Basic level
I to create testbeds for real/external environments
I to ease the interface/interaction with existing software
environments

I Advanced level
I to uniformly encapsulate and modularise functionalities of the
MAS out of the agents
I typically related to interaction, coordination, organisation,
security

I externalisation
I this implies changing the perspective on the environment

I environment as a first-class abstraction of the MAS
I endogenous environments (vs. exogenous ones)
I programmable environments
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Environment Programming: General Issues

I Defining the interface
I actions, perceptions
I data-model

I Defining the environment computational model &
architecture
I how the environment works
I structure, behaviour, topology
I core aspects to face: concurrency, distribution

I Defining the environment programming model
I how to program the environment
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Basic Level Overview
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Advanced Level Overview

I Vision: environment as a first-class abstraction in
MAS [Weyns et al., 2007, Ricci et al., 2010b]
I application or endogenous environments, i.e. that
environment which is an explicit part of the MAS

I providing an exploitable design & programming abstraction to
build MAS applications

I Outcome
I distinguishing clearly between the responsibilities of agent and
environment
I separation of concerns

I improving the engineering practice
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A&A and CArtAgO



Agents and Artifacts (A&A) Conceptual Model:
Background Human Metaphor
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A&A Basic Concepts [Omicini et al., 2008]

I Agents
I autonomous, goal-oriented pro-active entities
I create and co-use artifacts for supporting their activities

I besides direct communication

I Artifacts
I non-autonomous, function-oriented, stateful entities

I controllable and observable
I modelling the tools and resources used by agents

I designed by MAS programmers

I Workspaces
I grouping agents & artifacts
I defining the topology of the computational environment
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A&A Programming Model Features [Ricci et al., 2007b]

I Abstraction
I artifacts as first-class resources and tools for agents

I Modularisation
I artifacts as modules encapsulating functionalities, organized
in workspaces

I Extensibility and openness
I artifacts can be created and destroyed at runtime by agents

I Reusability
I artifacts (types) as reusable entities, for setting up di↵erent
kinds of environments
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A&A Meta-Model in More Detail [Ricci et al., 2010b]
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Artifact Abstract Representation
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A World of Artifacts
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A Simple Taxonomy

I Individual or personal artifacts
I designed to provide functionalities for a single agent use

I e.g. an agenda for managing deadlines, a library...

I Social artifacts
I designed to provide functionalities for structuring and
managing the interaction in a MAS

I coordination artifacts [Omicini et al., 2004], organisation
artifacts, ...
I e.g. a blackboard, a game-board,...

I Boundary artifacts
I to represent external resources/services

I e.g. a printer, a Web Service
I to represent devices enabling I/O with users

I e.g GUI, console, etc.
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Actions and Percepts in Artifact-Based Environments
I Explicit semantics defined by the (endogenous)
environment [Ricci et al., 2010c]
I success/failure semantics, execution semantics
I defining the contract (in the SE acceptation) provided by the
environment

actions  ! artifacts’ operation
the action repertoire is given by the dynamic set of operations
provided by the overall set of artifacts available in the workspace
can be changed by creating/disposing artifacts

I action success/failure semantics is defined by operation
semantics

percepts  ! artifacts’ observable properties + signals
properties represent percepts about the state of the environment
signals represent percepts concerning events signalled by the
environment
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Interaction Model: Use

op(Params)
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I Performing an action corresponds to triggering the execution
of an operation
I acting on artifact’s usage interface
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Interaction Model: Observation

Belief base
(or alike)

PropName(Value).
PropName(Value).
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I Agents can dynamically select which artifacts to observe
I predefined focus/stopFocus actions
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Interaction Model: Observation
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I By focussing an artifact
I observable properties are mapped into agent dynamic
knowledge about the state of the world, as percepts
I e.g. belief base

I signals are mapped as percepts related to observable events
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CArtAgO

I Common ARtifact infrastructure for AGent Open
environment (CArtAgO) [Ricci et al., 2009]

I Computational framework / infrastructure to implement and
run artifact-based environment [Ricci et al., 2007c]
I Java-based programming model for defining artifacts
I set of basic API for agent platforms to work within
artifact-based environment

I Distributed and open MAS
I workspaces distributed on Internet nodes

I agents can join and work in multiple workspace at a time

I Role-Based Access Control (RBAC) security model

I Open-source technology
I available at https://github.com/CArtAgO-lang/cartago
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Example 1: A Simple Counter Artifact

class Counter extends Artifact {
  
  void init(){
    defineObsProp("count",0);
  }
  
  @OPERATION void inc(){
    ObsProperty p = getObsProperty("count");
    p.updateValue(p.intValue() + 1);
    signal("tick");
  }
}

inc

count 5

I Some API spots
I Artifact base class
I @OPERATION annotation to mark artifact’s operations
I set of primitives to work define/update/.. observable
properties

I signal primitive to generate signals
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Example 1: User and Observer Agents

!create_and_use.

+!create_and_use : true 
  <- !setupTool(Id);
     // use
     inc;
     // second use specifying the Id
     inc [artifact_id(Id)].

// create the tool
+!setupTool(C): true 
  <- makeArtifact("c0","Counter",C).

!observe.

+!observe : true 
  <- ?myTool(C);  // discover the tool
     focus(C).

+count(V) 
  <- println(“observed new value: “,V).

+tick [artifact_name(Id,”c0”)]  
  <- println(“perceived a tick”).

+?myTool(CounterId): true 
  <- lookupArtifact(“c0”,CounterId).

-?myTool(CounterId): true 
  <- .wait(10); 
     ?myTool(CounterId).

OBSERVER(S)USER(S)

I Working with the shared counter
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Action Execution & Blocking Behaviour

I Given the action/operation map, by executing an action the
intention/activity is suspended until the corresponding
operation has completed or failed
I action completion events generated by the environment and
automatically processed by the agent/environment platform
bridge

I no need of explicit observation and reasoning by agents to
know if an action succeeded

I However the agent execution cycle is not blocked!
I the agent can continue to process percepts and possibly
execute actions of other intentions
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Summary

I environment as a first-class abstraction of the MAS
I endogenous environments (vs. exogenous ones)
I programmable environments

I encapsulate functionalities of the MAS out of the agents
I externalisation
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