
Agent Dimension

PósAutomação — UFSC

Agent Dimension

PósAutomação — UFSC

20
24
-1
1-
11



Agent

agentperception action

2

Agent

agentperception action

20
24
-1
1-
11

Agent

The goal of this part is to introduce agent oriented programming
So it is about programming and about agent
What is an agent?
- it is not like a conventional program (that starts and ends)
- it is continuously running (like a server)
- continuously perceiving (“inputs”) the environment (sensors, messages, user
commands, ...)
- the “output” is continuous acting
- output is not data (as a procedural program) neither knowledge (as an inference
engine)
- it changes a lot!
- it is about how to program to act instead of programming to change data, or
to infer something

- it is about programming an agent and not a computer or a “mind”!



AI Agent

perception action

K

deliberationdeliberation

3

AI Agent

perception action

K

deliberationdeliberation

20
24
-1
1-
11

AI Agent

- considering an AI context, we take a symbolic approach:
- the agent has knowledge
- its behaviour is based on knowledge — “The Knowledge Level” [?]
- the developer defines that K (it can be learnt, but not the focus today)
- what is K? information, rules, plans, goals, ...

- in our case (agents), the focus is on K elements directed to actions



AI Agent

perception action

K

deliberationdeliberation

Reasoning
cycle

while true do
K ← K ± perception()

G← G ± deliberation(K)

A← means-end(G)
do(A)

4

AI Agent

perception action

K

deliberationdeliberation

Reasoning
cycle

while true do
K ← K ± perception()

G← G ± deliberation(K)

A← means-end(G)
do(A)20

24
-1
1-
11

AI Agent

- what is the engine?
- it is a continuous process that
– perceives
– decides actions to achieve a goal
– does the actions

- the agent has autonomy the choose actions
- an agent decides what to do!
- part of the task that usually a programmer does (ordering the actions) is done
by the agent.
- to program an agent is to define K (and not to write an algorithm)

Let’s move to a more practical perspective to consolidate the basic concepts (we

latter return to the conceptual background)



AI Agent

perception action

K

deliberationdeliberation

Reasoning
cycle

while true do
K ← K ± perception()

G← G ± deliberation(K)

A← means-end(G)
do(A)

4

features
• pro-activity: new (long-term)
goals can be created and the
agent is committed to them

• reactivity: prompt reaction
even when pursuing goals

AI Agent

perception action

K

deliberationdeliberation

Reasoning
cycle

while true do
K ← K ± perception()

G← G ± deliberation(K)

A← means-end(G)
do(A)20

24
-1
1-
11

AI Agent

- what is the engine?
- it is a continuous process that
– perceives
– decides actions to achieve a goal
– does the actions

- the agent has autonomy the choose actions
- an agent decides what to do!
- part of the task that usually a programmer does (ordering the actions) is done
by the agent.
- to program an agent is to define K (and not to write an algorithm)

Let’s move to a more practical perspective to consolidate the basic concepts (we

latter return to the conceptual background)



AI Agent

perception action

K

deliberationdeliberation

Reasoning
cycle

while true do
K ← K ± perception()

G← G ± deliberation(K)

A← means-end(G)
do(A)

4

features
• autonomy: to find (good)
means to achieve goals

• transparency: we can trace
back the reasons for an action

AI Agent

perception action

K

deliberationdeliberation

Reasoning
cycle

while true do
K ← K ± perception()

G← G ± deliberation(K)

A← means-end(G)
do(A)20

24
-1
1-
11

AI Agent

- what is the engine?
- it is a continuous process that
– perceives
– decides actions to achieve a goal
– does the actions

- the agent has autonomy the choose actions
- an agent decides what to do!
- part of the task that usually a programmer does (ordering the actions) is done
by the agent.
- to program an agent is to define K (and not to write an algorithm)

Let’s move to a more practical perspective to consolidate the basic concepts (we

latter return to the conceptual background)



AI Agent

perception action

K

deliberationdeliberation

to program an agent is to define K

deliberation autonomy

4

AI Agent

perception action

K

deliberationdeliberation

to program an agent is to define K

deliberation autonomy20
24
-1
1-
11

AI Agent

- what is the engine?
- it is a continuous process that
– perceives
– decides actions to achieve a goal
– does the actions

- the agent has autonomy the choose actions
- an agent decides what to do!
- part of the task that usually a programmer does (ordering the actions) is done
by the agent.
- to program an agent is to define K (and not to write an algorithm)

Let’s move to a more practical perspective to consolidate the basic concepts (we

latter return to the conceptual background)



Agent Knowledge (in Jason)

Beliefs : information about the environment, other agents, itself,
...

temperature(20).
happy(bob).

Goals : the agent objectives
!temperature(20).
!happy(bob).

Plans :

5

Agent Knowledge (in Jason)

Beliefs : information about the environment, other agents, itself,
...

temperature(20).
happy(bob).

Goals : the agent objectives
!temperature(20).
!happy(bob).

Plans :

20
24
-1
1-
11

Agent Knowledge (in Jason)

JaCaMo is a framework with languages that allows us to implement systems
based on K agents and ...
so elements of agent knowledge in JaCaMo (beliefs quite usual, novelty are goals
and plans, and how they are “interpreted”)

- Syntax inspired by Prolog: predicate(arguments)
- Plans = know how
- informal semantics: <if this happens> <- <do this>
- event oriented



Agent Knowledge (in Jason)

Beliefs : information about the environment, other agents, itself,
...

temperature(20).
happy(bob).

Goals : the agent objectives
!temperature(20).
!happy(bob).

Plans :

5

Agent Knowledge (in Jason)

Beliefs : information about the environment, other agents, itself,
...

temperature(20).
happy(bob).

Goals : the agent objectives
!temperature(20).
!happy(bob).

Plans :

20
24
-1
1-
11

Agent Knowledge (in Jason)

JaCaMo is a framework with languages that allows us to implement systems
based on K agents and ...
so elements of agent knowledge in JaCaMo (beliefs quite usual, novelty are goals
and plans, and how they are “interpreted”)

- Syntax inspired by Prolog: predicate(arguments)
- Plans = know how
- informal semantics: <if this happens> <- <do this>
- event oriented



Agent Knowledge (in Jason)

Beliefs : information about the environment, other agents, itself,
...

temperature(20).
happy(bob).

Goals : the agent objectives
!temperature(20).
!happy(bob).

Plans : specifies how goals can be achieved by actions
+!temperature(20) <- startCooling.
+!happy(bob) <- kiss(bob).

5

Agent Knowledge (in Jason)

Beliefs : information about the environment, other agents, itself,
...

temperature(20).
happy(bob).

Goals : the agent objectives
!temperature(20).
!happy(bob).

Plans : specifies how goals can be achieved by actions
+!temperature(20) <- startCooling.
+!happy(bob) <- kiss(bob).

20
24
-1
1-
11

Agent Knowledge (in Jason)

JaCaMo is a framework with languages that allows us to implement systems
based on K agents and ...
so elements of agent knowledge in JaCaMo (beliefs quite usual, novelty are goals
and plans, and how they are “interpreted”)

- Syntax inspired by Prolog: predicate(arguments)
- Plans = know how
- informal semantics: <if this happens> <- <do this>
- event oriented



Agent Knowledge (in Jason)

Beliefs : information about the environment, other agents, itself,
...

temperature(20).
happy(bob).

Goals : the agent objectives
!temperature(20).
!happy(bob).

Plans : specifies how goals can be achieved by actions
+!temperature(20) <- startCooling.
+!happy(bob) <- kiss(bob).

specifies reactions to mental state changes
+temperature(10) <- !temperature(20).
-happy(bob) <- !happy(bob).

5

Agent Knowledge (in Jason)

Beliefs : information about the environment, other agents, itself,
...

temperature(20).
happy(bob).

Goals : the agent objectives
!temperature(20).
!happy(bob).

Plans : specifies how goals can be achieved by actions
+!temperature(20) <- startCooling.
+!happy(bob) <- kiss(bob).

specifies reactions to mental state changes
+temperature(10) <- !temperature(20).
-happy(bob) <- !happy(bob).

20
24
-1
1-
11

Agent Knowledge (in Jason) — K = B + G + P

JaCaMo is a framework with languages that allows us to implement systems
based on K agents and ...
so elements of agent knowledge in JaCaMo (beliefs quite usual, novelty are goals
and plans, and how they are “interpreted”)

- Syntax inspired by Prolog: predicate(arguments)
- Plans = know how
- informal semantics: <if this happens> <- <do this>
- event oriented



Agent Knowledge (in Jason) — K = B + G + P

Beliefs : information about the environment, other agents, itself,
...

temperature(20).
happy(bob).

Goals : the agent objectives
!temperature(20).
!happy(bob).

Plans : specifies how goals can be achieved by actions
+!temperature(20) <- startCooling.
+!happy(bob) <- kiss(bob).

specifies reactions to mental state changes
+temperature(10) <- !temperature(20).
-happy(bob) <- !happy(bob).

5

Agent Knowledge (in Jason) — K = B + G + P

Beliefs : information about the environment, other agents, itself,
...

temperature(20).
happy(bob).

Goals : the agent objectives
!temperature(20).
!happy(bob).

Plans : specifies how goals can be achieved by actions
+!temperature(20) <- startCooling.
+!happy(bob) <- kiss(bob).

specifies reactions to mental state changes
+temperature(10) <- !temperature(20).
-happy(bob) <- !happy(bob).

20
24
-1
1-
11

Agent Knowledge (in Jason) — K = B + G + P

JaCaMo is a framework with languages that allows us to implement systems
based on K agents and ...
so elements of agent knowledge in JaCaMo (beliefs quite usual, novelty are goals
and plans, and how they are “interpreted”)

- Syntax inspired by Prolog: predicate(arguments)
- Plans = know how
- informal semantics: <if this happens> <- <do this>
- event oriented



Knowledge Sources

Beliefs, goals, and plans are provided by

• perception: in the case of beliefs

• developers: initial mental state of the agent

• other agents: by communication

• the agent itself: by reasoning or learning

6

Knowledge Sources

Beliefs, goals, and plans are provided by

• perception: in the case of beliefs

• developers: initial mental state of the agent

• other agents: by communication

• the agent itself: by reasoning or learning

20
24
-1
1-
11

Knowledge Sources



Smart Room Scenario — initial implementation

room

rc: 
room_controller

hvac : HVAC

temperature/1

state/1

temperature

startCooling/0

startHeating/0

stopAirConditioner/0

7

Smart Room Scenario — initial implementation

room

rc: 
room_controller

hvac : HVAC

temperature/1

state/1

temperature

startCooling/0

startHeating/0

stopAirConditioner/0

20
24
-1
1-
11

Smart Room Scenario — initial implementation

- HVAC provides perception of its state and the current temperature
- exposes 3 actions for the agent

(details of how to program this artifact will be presented later)



Agent Programming (in JaCaMo)

temperature startCooling
stopAirConditioner

temperature(.)

!temperature(.)

+temperature(.) <- …
+!temperature(.) <- …

deliberation

8

Agent Programming (in JaCaMo)

temperature startCooling
stopAirConditioner

temperature(.)

!temperature(.)

+temperature(.) <- …
+!temperature(.) <- …

deliberation

20
24
-1
1-
11

Agent Programming (in JaCaMo)

Let’s focus on programming that agent

- the perception of the current temperature is mapped to a belief like
temperature(30)
- the objective to maintain some temperature is mapped to a belief like
!temperature(30)

- the agent has plans to react to changes in the current temperature and the

creation of new goals to maintain some temperature



Agent Programming (in JaCaMo)

+temperature(30) <- !temperature(20).
+!temperature(20) <- startCooling.

9

Agent Programming (in JaCaMo)

+temperature(30) <- !temperature(20).
+!temperature(20) <- startCooling.

20
24
-1
1-
11

Agent Programming (in JaCaMo)

(agents are programmed in JaCaMo using the Jason language)
- these 2 lines are a complete Jason program, a program with 2 plans
- beliefs are added by perception
- (read the plans): in the event of a new belief temperature(30), react to it
creating the goal !temperature(20)
- in the event of a new a goal !temperature(20), react to it by doing
startCooling
- the program has no begin/end, declarative approach (K is declared)
- set of reactive “rules” (implemented by the plans)

- which are the problems of this implementation?

(implement, run, and see!)



Agent Programming (in JaCaMo)

+temperature(30) <- !temperature(20).
+temperature(20) <- stopAirConditioner.

+!temperature(20) <- startCooling.

10

Agent Programming (in JaCaMo)

+temperature(30) <- !temperature(20).
+temperature(20) <- stopAirConditioner.

+!temperature(20) <- startCooling.

20
24
-1
1-
11

Agent Programming (in JaCaMo)

(improved version with stopAirConditioner, that stops)

(image the agent behaviour) - which are the problems of this implementation?



Agent Programming (in JaCaMo)

// initial belief, given by the developer
preference(20).

// reaction to changes in the temperature
+temperature(T) : preference(P) & math.abs(P-T) > 2

<- !temperature(P).
+temperature(T) : preference(T)

<- stopAirConditioner.

// plans to achieve some temperature
+!temperature(P) : temperature(T) & T > P

<- startCooling.

11

Agent Programming (in JaCaMo)

// initial belief, given by the developer
preference(20).

// reaction to changes in the temperature
+temperature(T) : preference(P) & math.abs(P-T) > 2

<- !temperature(P).
+temperature(T) : preference(T)

<- stopAirConditioner.

// plans to achieve some temperature
+!temperature(P) : temperature(T) & T > P

<- startCooling.20
24
-1
1-
11

Agent Programming (in JaCaMo)

What is new:
- new belief, not perceived, but defined in the inicial code of the agent
- variable with upper case first letter
- plans have context, used for the agent to select the most appropriated
- the evaluation of the context is like a query to the belief base, and it may assign
values to variables

Agent behaviour:
- any change in temperature produces actions to start cooling, is it ok?

- what if the preference changes?



Agent Programming (in JaCaMo)

// initial belief, given by the developer
preference(20).

// initial goal, given by the developer
!keep_temperature.

// maintenance the goal pattern
+!keep_temperature

: temperature(T) & preference(P) & T > P
<- startCooling;

!keep_temperature.
+!keep_temperature

: temperature(T) & preference(P) & T <= P
<- stopAirConditioner;

!keep_temperature.

12

Agent Programming (in JaCaMo)

// initial belief, given by the developer
preference(20).

// initial goal, given by the developer
!keep_temperature.

// maintenance the goal pattern
+!keep_temperature

: temperature(T) & preference(P) & T > P
<- startCooling;

!keep_temperature.
+!keep_temperature

: temperature(T) & preference(P) & T <= P
<- stopAirConditioner;

!keep_temperature.

20
24
-1
1-
11

Agent Programming (in JaCaMo)

maintenance goal— long term goals
agent is not reacting to changes in beliefs anymore, it has a "forever" goal that,
based on the circumstances, select a proper plan of actions

- does it reacts to changes in the preference?
pro-activity



Main Features

• pro-activity: new (long-term) goals can be created

• reactivity: even when pursuing some goals

• autonomy: to find (good) means to achieve goals

• context awareness: plans are selected based on the circumstances

• transparency: we can trace back the reasons for an action

• sound theoretical background for agent architectures:
• practical reasoning [Bratman, 1987]
• intentions [Cohen and Levesque, 1987]
• BDI [Rao and George�, 1995]
• ...

13

Main Features

• pro-activity: new (long-term) goals can be created

• reactivity: even when pursuing some goals

• autonomy: to find (good) means to achieve goals

• context awareness: plans are selected based on the circumstances

• transparency: we can trace back the reasons for an action

• sound theoretical background for agent architectures:
• practical reasoning [Bratman, 1987]
• intentions [Cohen and Levesque, 1987]
• BDI [Rao and George�, 1995]
• ...20

24
-1
1-
11

Main Features

because:
- agents have a reasoning cycle
- based on knowledge
- reasoning about what to do (practical reasoning) (detailed later in the course)

Are usual languages (Java, Python, Prolog, ...) appropriate to implement agents?

Can we use them? Sure we can. But they will give us a lot of work to code agents.



Wrap-up

• Knowledge Level

agents know

• Practical Reasoning

agents act

14

Wrap-up

• Knowledge Level

agents know

• Practical Reasoning

agents act

20
24
-1
1-
11

Wrap-up



Agent Interaction
(communication)

Agent Interaction
(communication)

20
24
-1
1-
11



Agent–Agent Communication

K
agent 

communication
language

16

Agent–Agent Communication

K
agent 

communication
language

20
24
-1
1-
11

Agent–Agent Communication

Agent Communication Language
- the language to communicate is not the same as the language to program agents,
since they have di�erent purposes
- works at the Knowledge level (again!)
- when sending a message, the sender intends to change the mind of receiver
(mentalistic view)
- K is transmitted (thing I know that, know how to, I wish, ...)
so send beliefs, desires, plans, ...

- used to build negotiation, coordination, information share



Semantic of messages

AliceBob tell preferred_temp(20)

preferred_temp(20)[source(bob)]

A message has:

• an intention (tell, ask, achieve, ...)

• a content (belief, goal, plan)

17

Semantic of messages

AliceBob tell preferred_temp(20)

preferred_temp(20)[source(bob)]

A message has:

• an intention (tell, ask, achieve, ...)

• a content (belief, goal, plan)20
24
-1
1-
11

Semantic of messages



Semantic of messages

AliceBob achieve temp(20)

!temp(20)[source(bob)]

A message has:

• an intention (tell, ask, achieve, ...)

• a content (belief, goal, plan)

17

Semantic of messages

AliceBob achieve temp(20)

!temp(20)[source(bob)]

A message has:

• an intention (tell, ask, achieve, ...)

• a content (belief, goal, plan)20
24
-1
1-
11

Semantic of messages



Semantic of messages

AliceBob ask temp(_)

temp(20)[source(percept)]

A message has:

• an intention (tell, ask, achieve, ...)

• a content (belief, goal, plan)

17

Semantic of messages

AliceBob ask temp(_)

temp(20)[source(percept)]

A message has:

• an intention (tell, ask, achieve, ...)

• a content (belief, goal, plan)20
24
-1
1-
11

Semantic of messages



Semantic of messages

AliceBob tell temp(20)

temp(20)[source(percept)]temp(20)[source(alice)]

A message has:

• an intention (tell, ask, achieve, ...)

• a content (belief, goal, plan)

17

Semantic of messages

AliceBob tell temp(20)

temp(20)[source(percept)]temp(20)[source(alice)]

A message has:

• an intention (tell, ask, achieve, ...)

• a content (belief, goal, plan)20
24
-1
1-
11

Semantic of messages



Semantic of messages

AliceBob tell temp(20)

temp(20)[source(percept)]temp(20)[source(alice)]

• we are not programming computers,
we are programming agents, which are based on knowledge

• communication is not about data exchange, but
knowledge sharing

17

Semantic of messages

AliceBob tell temp(20)

temp(20)[source(percept)]temp(20)[source(alice)]

• we are not programming computers,
we are programming agents, which are based on knowledge

• communication is not about data exchange, but
knowledge sharing20

24
-1
1-
11

Semantic of messages



JaCaMo implementation

Sender: .send(bob,tell,happy(alice))

• receiver: agent unique name

• performative: tell, achieve, askOne, askHow, ...

• content: a literal

Receiver

• nothing is needed

Properties

• distributed & support for decentralized

• (usually) asynchronous

• KQML vs FIPA-ACL

• not reduced to method invocation
18

JaCaMo implementation

Sender: .send(bob,tell,happy(alice))

• receiver: agent unique name

• performative: tell, achieve, askOne, askHow, ...

• content: a literal

Receiver

• nothing is needed

Properties

• distributed & support for decentralized

• (usually) asynchronous

• KQML vs FIPA-ACL

• not reduced to method invocation

20
24
-1
1-
11

JaCaMo implementation

no code in the receiver, the semantics of the ACL is implemented on the inter-
preter!
distributed means several machines
decentralised means no central control

KQML and FIPA-ACL are initiatives to standardise ACL

KQML was the standard when Jason was first developed



JaCaMo Performatives

• tell and untell: change beliefs of receiver

• achieve and unachieve: change goals of receiver

• askOne and askAll: ask for beliefs of the receiver

• askHow, tellHow, and untellHow: exchange plans with other agent

• signal: add an event in the receiver

19

JaCaMo Performatives

• tell and untell: change beliefs of receiver

• achieve and unachieve: change goals of receiver

• askOne and askAll: ask for beliefs of the receiver

• askHow, tellHow, and untellHow: exchange plans with other agent

• signal: add an event in the receiver

20
24
-1
1-
11

JaCaMo Performatives

Theoretical background is speech acts [?, ?]: to say is to act; to power of word.

synchronous cases:
.send(a,askOne,v(X),A)
it blocks the intention until an answer is received, the answer is assigned to A

signal is quite recent in JaCaMo (Jason)

e.g. .send(bob,signal,hello)



Smart Room Scenario

many users

The system have to consider the preference of temperature of many
users and use a voting strategy to define the target temperature

personal 
_assistant

pref_temp(20)

personal 
_assistant

rc: room
_controller 

personal 
_assistant

hvac : HVAC

startHeating/0

startCooling/0

state/1

temperature/1

stopAirConditionner/0
pref_temp(30)

pref_temp(25)

20

Smart Room Scenario

many users

The system have to consider the preference of temperature of many
users and use a voting strategy to define the target temperature

personal 
_assistant

pref_temp(20)

personal 
_assistant

rc: room
_controller 

personal 
_assistant

hvac : HVAC

startHeating/0

startCooling/0

state/1

temperature/1

stopAirConditionner/0
pref_temp(30)

pref_temp(25)20
24
-1
1-
11

Smart Room Scenario

decentralised solution

we will solve it using agent communication



Interaction Protocols coordination

room_
controller 

 
personal_ 
assistant

tell open_voting(ConvId, Options, Timeout)

tell close_voting(ConvId, Result)

tell ballot(ConvId, Vote)

21

Interaction Protocols coordination

room_
controller 

 
personal_ 
assistant

tell open_voting(ConvId, Options, Timeout)

tell close_voting(ConvId, Result)

tell ballot(ConvId, Vote)

20
24
-1
1-
11

Interaction Protocols coordination

decentralised solution requires coordination (of actions)

coordination of actions, order actions

here, order of comunicative actions



Protocol Implementation

22

Protocol Implementation

20
24
-1
1-
11

Protocol Implementation

live coding



Wrap-up: Agent Model

Agent

Agent Goal

Plan

Belief

Action

Event
body

context

trigger

ac
hi

ev
es

dynamic relation compositioninheritance

External Internal Communicative

generates

generates

23

Wrap-up: Agent Model

Agent

Agent Goal

Plan

Belief

Action

Event
body

context

trigger

ac
hi

ev
es

dynamic relation compositioninheritance

External Internal Communicative

generates

generates

20
24
-1
1-
11

Wrap-up: Agent Model



Wrap-up: Agent Programming

• AgentSpeak
• Logic + BDI
• Agent programming language

• Jason
• AgentSpeak interpreter
• Implements the operational semantics of AgentSpeak
• Speech-act based communicaiton
• Highly customisable
• Useful tools
• Open source

24

Wrap-up: Agent Programming

• AgentSpeak
• Logic + BDI
• Agent programming language

• Jason
• AgentSpeak interpreter
• Implements the operational semantics of AgentSpeak
• Speech-act based communicaiton
• Highly customisable
• Useful tools
• Open source20

24
-1
1-
11

Wrap-up: Agent Programming



Fundamentals

Fundamentals

20
24
-1
1-
11

I do not plan to present all the following slides, I will select them regarding the

interests of the audience



Literature

Books: [Bordini et al., 2005], [Bordini et al., 2009]

Proceedings: EMAS, ProMAS, DALT, LADS, AGERE, ...

Surveys: [Bordini et al., 2006], [Fisher et al., 2007] ...

Languages of historical importance: Agent0 [Shoham, 1993],
AgentSpeak(L) [Rao, 1996], MetateM [Fisher, 2005],
3APL [Hindriks et al., 1997],
Golog [Giacomo et al., 2000]

Other prominent languages:
Jason [Bordini et al., 2007], Jadex [Pokahr et al., 2005],
2APL [Dastani, 2008], GOAL [Hindriks, 2009],
JACK [Winiko�, 2005],
ASTRA, SARL

But many others languages and platforms...

26

Literature

Books: [Bordini et al., 2005], [Bordini et al., 2009]

Proceedings: EMAS, ProMAS, DALT, LADS, AGERE, ...

Surveys: [Bordini et al., 2006], [Fisher et al., 2007] ...

Languages of historical importance: Agent0 [Shoham, 1993],
AgentSpeak(L) [Rao, 1996], MetateM [Fisher, 2005],
3APL [Hindriks et al., 1997],
Golog [Giacomo et al., 2000]

Other prominent languages:
Jason [Bordini et al., 2007], Jadex [Pokahr et al., 2005],
2APL [Dastani, 2008], GOAL [Hindriks, 2009],
JACK [Winiko�, 2005],
ASTRA, SARL

But many others languages and platforms...

20
24
-1
1-
11 Fundamentals

Literature

Hard work have being done on this approach already.

http://www.astralanguage.com
http://www.sarl.io
http://www.astralanguage.com
http://www.sarl.io


Some Languages and Platforms

Jason (Hübner, Bordini, ...); 3APL and 2APL (Dastani, van Riemsdijk,
Meyer, Hindriks, ...); Jadex (Braubach, Pokahr); MetateM (Fisher,
Guidini, Hirsch, ...); ConGoLog (Lesperance, Levesque, ... / Boutilier –
DTGolog); Teamcore/ MTDP (Milind Tambe, ...); IMPACT
(Subrahmanian, Kraus, Dix, Eiter); CLAIM (Amal El
Fallah-Seghrouchni, ...); GOAL (Hindriks); BRAHMS (Sierhuis, ...);
SemantiCore (Blois, ...); STAPLE (Kumar, Cohen, Huber); Go! (Clark,
McCabe); Bach (John Lloyd, ...); MINERVA (Leite, ...); SOCS (Torroni,
Stathis, Toni, ...); FLUX (Thielscher); JIAC (Hirsch, ...); JADE
(Agostino Poggi, ...); JACK (AOS); Agentis (Agentis Software); Jackdaw
(Calico Jack); ASTRA (Rem Collier); SARL (Stephane Galland,
Sebastian Rodriguez); simpAL, ALOO (Ricci, ...);
...

27

Some Languages and Platforms

Jason (Hübner, Bordini, ...); 3APL and 2APL (Dastani, van Riemsdijk,
Meyer, Hindriks, ...); Jadex (Braubach, Pokahr); MetateM (Fisher,
Guidini, Hirsch, ...); ConGoLog (Lesperance, Levesque, ... / Boutilier –
DTGolog); Teamcore/ MTDP (Milind Tambe, ...); IMPACT
(Subrahmanian, Kraus, Dix, Eiter); CLAIM (Amal El
Fallah-Seghrouchni, ...); GOAL (Hindriks); BRAHMS (Sierhuis, ...);
SemantiCore (Blois, ...); STAPLE (Kumar, Cohen, Huber); Go! (Clark,
McCabe); Bach (John Lloyd, ...); MINERVA (Leite, ...); SOCS (Torroni,
Stathis, Toni, ...); FLUX (Thielscher); JIAC (Hirsch, ...); JADE
(Agostino Poggi, ...); JACK (AOS); Agentis (Agentis Software); Jackdaw
(Calico Jack); ASTRA (Rem Collier); SARL (Stephane Galland,
Sebastian Rodriguez); simpAL, ALOO (Ricci, ...);
...

20
24
-1
1-
11 Fundamentals

Some Languages and Platforms

some proposals are libraries/packages for existing languages
others are new languages

many agent languages have e�cient and stable interpreters

http://www.astralanguage.com
http://www.sarl.io
http://www.astralanguage.com
http://www.sarl.io


Agent Oriented Programming — Inspiration

• Use of mentalistic notions and a societal view of computation
[Shoham, 1993]

• Heavily influenced by the BDI architecture and reactive planning
systems [Bratman et al., 1988]

28

Agent Oriented Programming — Inspiration

• Use of mentalistic notions and a societal view of computation
[Shoham, 1993]

• Heavily influenced by the BDI architecture and reactive planning
systems [Bratman et al., 1988]

20
24
-1
1-
11 Fundamentals

Agent Oriented Programming — Inspiration

I do recommend to read foundational papers like these from a Philosopher (try-

ing to solve the problem for humans)



BDI architecture

Beliefs

Desires

Intentions means-end

deliberate

BRF

options

perception

action

29

BDI architecture

Beliefs

Desires

Intentions means-end

deliberate

BRF

options

perception

action

20
24
-1
1-
11 Fundamentals

BDI architecture

mentalistic view (the behavior of the agent is explained in terms of its mental
state: B, D, and I):
- B: beliefs (information) the agent has about its environment (updated by per-
ception) - D: what the agent wishes - I: desires the agent has *committed* to
(based on the current beliefs and other intentions)
Two main processes: deliberate: Desire -> Intention means-ends: Intention ->
Actions
BDI explains the actions of the agent! (because the agent intents to, desires to,
and believes it is feasible)

So next slides will highlight properties of the commitment (serious commitment

but not too much)



BDI reasoning cycle [Wooldridge, 2009]

while true do
B ← brf(B, perception()) // belief revision
D ← options(B, I) // desire revision
I ← deliberate(B,D, I) // get intentions
π ← meansend(B, I,A) // gets a plan
while π 6= ∅ do

execute( head(π) )
π ← tail(π)

30

BDI reasoning cycle [Wooldridge, 2009]

while true do
B ← brf(B, perception()) // belief revision
D ← options(B, I) // desire revision
I ← deliberate(B,D, I) // get intentions
π ← meansend(B, I,A) // gets a plan
while π 6= ∅ do

execute( head(π) )
π ← tail(π)

20
24
-1
1-
11 Fundamentals

BDI reasoning cycle [Wooldridge, 2009]

intentions are desire + commitment.

types of commitments: over commitment, Singel-Minded, .... there are good

bibliography on that.



BDI reasoning cycle [Wooldridge, 2009]

while true do
B ← brf(B, perception()) // belief revision
D ← options(B, I) // desire revision
I ← deliberate(B,D, I) // get intentions
π ← meansend(B, I,A) // gets a plan
while π 6= ∅ do

execute( head(π) )
π ← tail(π)

fine for pro-activity, but not for reactivity (over commitment)

30

BDI reasoning cycle [Wooldridge, 2009]

while true do
B ← brf(B, perception()) // belief revision
D ← options(B, I) // desire revision
I ← deliberate(B,D, I) // get intentions
π ← meansend(B, I,A) // gets a plan
while π 6= ∅ do

execute( head(π) )
π ← tail(π)

fine for pro-activity, but not for reactivity (over commitment)

20
24
-1
1-
11 Fundamentals

BDI reasoning cycle [Wooldridge, 2009]

intentions are desire + commitment.

types of commitments: over commitment, Singel-Minded, .... there are good

bibliography on that.



BDI reasoning cycle [Wooldridge, 2009]

while true do
B ← brf(B, perception()) // belief revision
D ← options(B, I) // desire revision
I ← deliberate(B,D, I) // get intentions
π ← meansend(B, I,A) // gets a plan
while π 6= ∅ do

execute( head(π) )
π ← tail(π)

B ← brf(B, perception())

if ¬sound(π, I, B) then
π ← meansend(B, I,A)

revise commitment to plan – re-planning for context adaptation

30

BDI reasoning cycle [Wooldridge, 2009]

while true do
B ← brf(B, perception()) // belief revision
D ← options(B, I) // desire revision
I ← deliberate(B,D, I) // get intentions
π ← meansend(B, I,A) // gets a plan
while π 6= ∅ do

execute( head(π) )
π ← tail(π)

B ← brf(B, perception())

if ¬sound(π, I, B) then
π ← meansend(B, I,A)

revise commitment to plan – re-planning for context adaptation20
24
-1
1-
11 Fundamentals

BDI reasoning cycle [Wooldridge, 2009]

intentions are desire + commitment.

types of commitments: over commitment, Singel-Minded, .... there are good

bibliography on that.



BDI reasoning cycle [Wooldridge, 2009]

while true do
B ← brf(B, perception()) // belief revision
D ← options(B, I) // desire revision
I ← deliberate(B,D, I) // get intentions
π ← meansend(B, I,A) // gets a plan
while π 6= ∅ and ¬succeeded(I,B) and ¬impossible(I,B) do

execute( head(π) )
π ← tail(π)

B ← brf(B, perception())

if ¬sound(π, I, B) then
π ← meansend(B, I,A)

revise commitment to intentions – Single-Minded Commitment

30

BDI reasoning cycle [Wooldridge, 2009]

while true do
B ← brf(B, perception()) // belief revision
D ← options(B, I) // desire revision
I ← deliberate(B,D, I) // get intentions
π ← meansend(B, I,A) // gets a plan
while π 6= ∅ and ¬succeeded(I,B) and ¬impossible(I,B) do

execute( head(π) )
π ← tail(π)

B ← brf(B, perception())

if ¬sound(π, I, B) then
π ← meansend(B, I,A)

revise commitment to intentions – Single-Minded Commitment20
24
-1
1-
11 Fundamentals

BDI reasoning cycle [Wooldridge, 2009]

intentions are desire + commitment.

types of commitments: over commitment, Singel-Minded, .... there are good

bibliography on that.



BDI reasoning cycle [Wooldridge, 2009]

while true do
B ← brf(B, perception()) // belief revision
D ← options(B, I) // desire revision
I ← deliberate(B,D, I) // get intentions
π ← meansend(B, I,A) // gets a plan
while π 6= ∅ and ¬succeeded(I,B) and ¬impossible(I,B) do

execute( head(π) )
π ← tail(π)

B ← brf(B, perception())

if reconsider(I,B) then
D ← options(B, I)

I ← deliberation(B,D, I)

if ¬sound(π, I, B) then
π ← meansend(B, I,A)

reconsider the intentions (not always!) 30

BDI reasoning cycle [Wooldridge, 2009]

while true do
B ← brf(B, perception()) // belief revision
D ← options(B, I) // desire revision
I ← deliberate(B,D, I) // get intentions
π ← meansend(B, I,A) // gets a plan
while π 6= ∅ and ¬succeeded(I,B) and ¬impossible(I,B) do

execute( head(π) )
π ← tail(π)

B ← brf(B, perception())

if reconsider(I,B) then
D ← options(B, I)

I ← deliberation(B,D, I)

if ¬sound(π, I, B) then
π ← meansend(B, I,A)

reconsider the intentions (not always!)

20
24
-1
1-
11 Fundamentals

BDI reasoning cycle [Wooldridge, 2009]

intentions are desire + commitment.

types of commitments: over commitment, Singel-Minded, .... there are good

bibliography on that.



Intentions

• Intentions pose problems for the agents: they need to determine a
way to achieve them
(planning and acting)

• Intentions provide a “screen of admissibility” for adopting new
intentions

• Agents keep tracking their success of attempting to achieve their
intentions

• Agents should not spend all their time revising intentions
(losing pro-activity and reactivity)

31

Intentions

• Intentions pose problems for the agents: they need to determine a
way to achieve them
(planning and acting)

• Intentions provide a “screen of admissibility” for adopting new
intentions

• Agents keep tracking their success of attempting to achieve their
intentions

• Agents should not spend all their time revising intentions
(losing pro-activity and reactivity)20

24
-1
1-
11 Fundamentals

Intentions



(BDI & Jason) Hello World – agent bob

friend(alice). // B

!say(hello). // D

+!say(M) <- .print(M). // I

32

(BDI & Jason) Hello World – agent bob

friend(alice). // B

!say(hello). // D

+!say(M) <- .print(M). // I

20
24
-1
1-
11 Fundamentals

(BDI & Jason) Hello World – agent bob

- how does it look like? (comparing with other languages like C, Java, ....)
- jason uses procedural goals (goals to do) and not declarative goals (goals to
be), as 2APL. it comes from the orignal PRS inspiration where we are specifying
behaviour instead of (env) states [?]
- plans are not prolog (theoretical reasoning), they are the for practical reasoning.

- the language gives constructors to program BDI with the required features

shown in the Woodridge algorithm



(BDI & Jason) Hello World – agent bob

friend(alice). // B

!say(hello). // D

+!say(M) <- .print(M). // I

32

beliefs
• prolog like (FOL)

(BDI & Jason) Hello World – agent bob

friend(alice). // B

!say(hello). // D

+!say(M) <- .print(M). // I

20
24
-1
1-
11 Fundamentals

(BDI & Jason) Hello World – agent bob

- how does it look like? (comparing with other languages like C, Java, ....)
- jason uses procedural goals (goals to do) and not declarative goals (goals to
be), as 2APL. it comes from the orignal PRS inspiration where we are specifying
behaviour instead of (env) states [?]
- plans are not prolog (theoretical reasoning), they are the for practical reasoning.

- the language gives constructors to program BDI with the required features

shown in the Woodridge algorithm



(BDI & Jason) Hello World – agent bob

friend(alice). // B

!say(hello). // D

+!say(M) <- .print(M). // I

32

desires
• prolog like

• with ! prefix

(BDI & Jason) Hello World – agent bob

friend(alice). // B

!say(hello). // D

+!say(M) <- .print(M). // I

20
24
-1
1-
11 Fundamentals

(BDI & Jason) Hello World – agent bob

- how does it look like? (comparing with other languages like C, Java, ....)
- jason uses procedural goals (goals to do) and not declarative goals (goals to
be), as 2APL. it comes from the orignal PRS inspiration where we are specifying
behaviour instead of (env) states [?]
- plans are not prolog (theoretical reasoning), they are the for practical reasoning.

- the language gives constructors to program BDI with the required features

shown in the Woodridge algorithm



(BDI & Jason) Hello World – agent bob

friend(alice). // B

!say(hello). // D

+!say(M) <- .print(M). // I

32

plans

• define when a desire becomes
an intention
 deliberate

• how it is satisfied

• are used for practical reasoning
 means-end

(BDI & Jason) Hello World – agent bob

friend(alice). // B

!say(hello). // D

+!say(M) <- .print(M). // I

20
24
-1
1-
11 Fundamentals

(BDI & Jason) Hello World – agent bob

- how does it look like? (comparing with other languages like C, Java, ....)
- jason uses procedural goals (goals to do) and not declarative goals (goals to
be), as 2APL. it comes from the orignal PRS inspiration where we are specifying
behaviour instead of (env) states [?]
- plans are not prolog (theoretical reasoning), they are the for practical reasoning.

- the language gives constructors to program BDI with the required features

shown in the Woodridge algorithm



BDI Hello World — desires from perception (options)

friend(alice).

+happy(A) <- !say(hi(A)).

+!say(M) <- .print(M).

33

BDI Hello World — desires from perception (options)

friend(alice).

+happy(A) <- !say(hi(A)).

+!say(M) <- .print(M).

20
24
-1
1-
11 Fundamentals

BDI Hello World — desires from perception
(options)

desire via perception, the agent starts believing someone is happy and then cre-

ates a new desire



BDI Hello World — plan selection

friend(alice).

+happy(A) : friend(A) <- !say(hi(A)).
+happy(A) : not friend(A) <- !say(good_afternoon(A)).

+!say(M) <- .print(M).

34

BDI Hello World — plan selection

friend(alice).

+happy(A) : friend(A) <- !say(hi(A)).
+happy(A) : not friend(A) <- !say(good_afternoon(A)).

+!say(M) <- .print(M).

20
24
-1
1-
11 Fundamentals

BDI Hello World — plan selection

the agent selects the plan that is more suitable for the current circumstance. plan
context is used for that.
whenever (trigger event)
- I start to believe that A is happy
and (context)
- I belief that A is a friend

then (body)
- create a new desire to say hi

whenever I have the desire to say something, commit to that desire and use the

body of the plan to fullfil it.



BDI Hello World — intention revision

friend(alice).

+happy(A) : friend(A) <- !say(hi(A)).
+happy(A) : not friend(A) <- !say(good_afternoon(A)).

+!say(M) <- .print(M); .wait(1000); !say(M).

+busy(bob) <- .drop_intention(say(_)).

35

BDI Hello World — intention revision

friend(alice).

+happy(A) : friend(A) <- !say(hi(A)).
+happy(A) : not friend(A) <- !say(good_afternoon(A)).

+!say(M) <- .print(M); .wait(1000); !say(M).

+busy(bob) <- .drop_intention(say(_)).

20
24
-1
1-
11 Fundamentals

BDI Hello World — intention revision



BDI Hello World — intention revision

friend(alice).

+happy(A) : friend(A) <- !say(hi(A)).
+happy(A) : not friend(A) <- !say(good_afternoon(A)).

+!say(M) <- .print(M); .wait(1000); !say(M).

+busy(bob) <- .drop_intention(say(_)).

35

features
• we can have several intentions based
on the same plans
 running concurrently

• long term goals running
 reaction meanwhile
 not overcommitted

• plan selection based on circumstance

• sequence of actions (partially)
computed by the interpreter
 programmer declares plans

BDI Hello World — intention revision

friend(alice).

+happy(A) : friend(A) <- !say(hi(A)).
+happy(A) : not friend(A) <- !say(good_afternoon(A)).

+!say(M) <- .print(M); .wait(1000); !say(M).

+busy(bob) <- .drop_intention(say(_)).

20
24
-1
1-
11 Fundamentals

BDI Hello World — intention revision



Jason

Jason

20
24
-1
1-
11 Jason



AgentSpeak: The foundational language for Jason

• Programming language for BDI agents

• Originally proposed by Rao [Rao, 1996]

• Elegant notation, based on logic programming

• Inspired by PRS (George� & Lansky), dMARS (Kinny), and BDI
Logics (Rao & George�)

• Abstract programming language aimed at theoretical results

37

AgentSpeak: The foundational language for Jason

• Programming language for BDI agents

• Originally proposed by Rao [Rao, 1996]

• Elegant notation, based on logic programming

• Inspired by PRS (George� & Lansky), dMARS (Kinny), and BDI
Logics (Rao & George�)

• Abstract programming language aimed at theoretical results

20
24
-1
1-
11 Jason

AgentSpeak: The foundational language for Jason



Jason: A practical implementation of AgentSpeak

• Jason implements the operational semantics of a variant of
AgentSpeak

• Has various extensions aimed at a more practical programming
language (e.g. definition of the MAS, communication, ...)

• Highly customised to simplify extension and experimentation

• Developed by Jomi F. Hübner, Rafael H. Bordini, and others

38

Jason: A practical implementation of AgentSpeak

• Jason implements the operational semantics of a variant of
AgentSpeak

• Has various extensions aimed at a more practical programming
language (e.g. definition of the MAS, communication, ...)

• Highly customised to simplify extension and experimentation

• Developed by Jomi F. Hübner, Rafael H. Bordini, and others

20
24
-1
1-
11 Jason

Jason: A practical implementation of AgentSpeak

agent dimension in JaCaMo



Main Language Constructs

Beliefs: represent the information available to an agent
(e.g. about the environment or other agents)

Goals: represent states of a�airs the agent wants to bring about

Plans: are recipes for action, representing the agent’s know-how

39

Main Language Constructs

Beliefs: represent the information available to an agent
(e.g. about the environment or other agents)

Goals: represent states of a�airs the agent wants to bring about

Plans: are recipes for action, representing the agent’s know-how

20
24
-1
1-
11 Jason

Main Language Constructs



Beliefs — Representation

Syntax

Beliefs are represented by annotated literals of first order logic

functor(term1, ..., termn)[annot1, ..., annotm]

Example (belief base of agent Tom)

red(box1)[source(percept)].
friend(bob,alice)[source(bob)].
lier(alice)[source(self),source(bob)].

~lier(bob)[source(self)].

40

Beliefs — Representation

Syntax

Beliefs are represented by annotated literals of first order logic

functor(term1, ..., termn)[annot1, ..., annotm]

Example (belief base of agent Tom)

red(box1)[source(percept)].
friend(bob,alice)[source(bob)].
lier(alice)[source(self),source(bob)].

~lier(bob)[source(self)].20
24
-1
1-
11 Jason

Beliefs— Representation

annotations is a set of terms with special unification — not available in Prolog



Beliefs — Dynamics i

by perception

beliefs annotated with source(percept) are automatically updated
accordingly to the perception of the agent

by intention

the plan operators + and - can be used to add and remove beliefs
annotated with source(self) (mental notes)

+lier(alice); // adds lier(alice)[source(self)]

-lier(john); // removes lier(john)[source(self)]

41

Beliefs — Dynamics i

by perception

beliefs annotated with source(percept) are automatically updated
accordingly to the perception of the agent

by intention

the plan operators + and - can be used to add and remove beliefs
annotated with source(self) (mental notes)

+lier(alice); // adds lier(alice)[source(self)]

-lier(john); // removes lier(john)[source(self)]20
24
-1
1-
11 Jason

Beliefs — Dynamics



Beliefs — Dynamics ii

by communication

when an agent receives a tell message, the content is a new belief
annotated with the sender of the message

.send(tom,tell,lier(alice)); // sent by bob

// adds lier(alice)[source(bob)] in Tom’s BB

...

.send(tom,untell,lier(alice)); // sent by bob

// removes lier(alice)[source(bob)] from Tom’s BB

42

Beliefs — Dynamics ii

by communication

when an agent receives a tell message, the content is a new belief
annotated with the sender of the message

.send(tom,tell,lier(alice)); // sent by bob

// adds lier(alice)[source(bob)] in Tom’s BB

...

.send(tom,untell,lier(alice)); // sent by bob

// removes lier(alice)[source(bob)] from Tom’s BB

20
24
-1
1-
11 Jason

Beliefs — Dynamics



Goals — Representation

Types of goals

• Achievement goal: goal to do

• Test goal: goal to know

Syntax

Goals have the same syntax as beliefs, but are prefixed by
! (achievement goal) or
? (test goal)

Example (Initial goal of agent Tom)

!write(book).

43

Goals — Representation

Types of goals

• Achievement goal: goal to do

• Test goal: goal to know

Syntax

Goals have the same syntax as beliefs, but are prefixed by
! (achievement goal) or
? (test goal)

Example (Initial goal of agent Tom)

!write(book).20
24
-1
1-
11 Jason

Goals— Representation

jason uses procedural goals (goals to do) and not declarative goals (goals to be,
as in planning, 2APL, ...).
it comes from the orignal PRS inspiration where we are specifying behaviour
instead of (env) states [?]

PRS also proposes maintenance goal, that is available in Jason(ER)



Goals — Dynamics i

by intention

the plan operators ! and ? can be used to add a new goal annotated with
source(self)

...
// adds new achievement goal !write(book)[source(self)]

!write(book);

// adds new test goal ?publisher(P)[source(self)]

?publisher(P);
...

44

Goals — Dynamics i

by intention

the plan operators ! and ? can be used to add a new goal annotated with
source(self)

...
// adds new achievement goal !write(book)[source(self)]

!write(book);

// adds new test goal ?publisher(P)[source(self)]

?publisher(P);
...20

24
-1
1-
11 Jason

Goals — Dynamics



Goals — Dynamics ii

by communication – achievement goal

when an agent receives an achieve message, the content is a new
achievement goal annotated with the sender of the message

.send(tom,achieve,write(book)); // sent by Bob

// adds new goal write(book)[source(bob)] for Tom

...

.send(tom,unachieve,write(book)); // sent by Bob

// removes goal write(book)[source(bob)] for Tom

45

Goals — Dynamics ii

by communication – achievement goal

when an agent receives an achieve message, the content is a new
achievement goal annotated with the sender of the message

.send(tom,achieve,write(book)); // sent by Bob

// adds new goal write(book)[source(bob)] for Tom

...

.send(tom,unachieve,write(book)); // sent by Bob

// removes goal write(book)[source(bob)] for Tom

20
24
-1
1-
11 Jason

Goals — Dynamics



Goals — Dynamics iii

by communication – test goal

when an agent receives an askOne or askAll message, the content is a
new test goal annotated with the sender of the message

.send(tom,askOne,published(P),Answer); // sent by Bob

// adds new goal ?publisher(P)[source(bob)] for Tom

// the response of Tom unifies with Answer

46

Goals — Dynamics iii

by communication – test goal

when an agent receives an askOne or askAll message, the content is a
new test goal annotated with the sender of the message

.send(tom,askOne,published(P),Answer); // sent by Bob

// adds new goal ?publisher(P)[source(bob)] for Tom

// the response of Tom unifies with Answer

20
24
-1
1-
11 Jason

Goals — Dynamics



Triggering Events — Representation

• Events happen as consequence to changes in the agent’s beliefs or
goals

• An agent reacts to events by executing plans

• Types of plan triggering events

+b (belief addition)
-b (belief deletion)
+!g (achievement-goal addition)
-!g (achievement-goal deletion)
+?g (test-goal addition)
-?g (test-goal deletion)

47

Triggering Events — Representation

• Events happen as consequence to changes in the agent’s beliefs or
goals

• An agent reacts to events by executing plans

• Types of plan triggering events

+b (belief addition)
-b (belief deletion)
+!g (achievement-goal addition)
-!g (achievement-goal deletion)
+?g (test-goal addition)
-?g (test-goal deletion)20

24
-1
1-
11 Jason

Triggering Events — Representation



Plans — Representation

An AgentSpeak plan has the following general structure:

triggering_event : context <- body.

where:

• the triggering event denotes the events that the plan is meant to
handle

• the context represent the circumstances in which the plan can be
used

• the body is the course of action to be used to handle the event if
the context is believed true at the time a plan is being chosen to
handle the event

48

Plans — Representation

An AgentSpeak plan has the following general structure:

triggering_event : context <- body.

where:

• the triggering event denotes the events that the plan is meant to
handle

• the context represent the circumstances in which the plan can be
used

• the body is the course of action to be used to handle the event if
the context is believed true at the time a plan is being chosen to
handle the event

20
24
-1
1-
11 Jason

Plans— Representation



Plans — Operators for Plan Context

Boolean operators

& (and)

| (or)
not (not)

= (unification)

>, >= (relational)

<, <= (relational)

== (equals)

\ == (di�erent)

Arithmetic operators

+ (sum)

- (subtraction)

* (multiply)

/ (divide)

div (divide – integer)

mod (remainder)

** (power)

49

Plans — Operators for Plan Context

Boolean operators

& (and)

| (or)
not (not)

= (unification)

>, >= (relational)

<, <= (relational)

== (equals)

\ == (di�erent)

Arithmetic operators

+ (sum)

- (subtraction)

* (multiply)

/ (divide)

div (divide – integer)

mod (remainder)

** (power)

20
24
-1
1-
11 Jason

Plans — Operators for Plan Context



Plans — Operators for Plan Body

+rain : time_to_leave(T) & clock.now(H) & H >= T
<- !g1; // new sub-goal

!!g2; // new goal

?b(X); // new test goal

+b1(T-H); // add mental note

-b2(T-H); // remove mental note

-+b3(T*H); // update mental note

jia.get(X); // internal action

X > 10; // constraint to carry on

close(door);// external action

!g3[hard_deadline(3000)]. // goal with deadline

50

Plans — Operators for Plan Body

+rain : time_to_leave(T) & clock.now(H) & H >= T
<- !g1; // new sub-goal

!!g2; // new goal

?b(X); // new test goal

+b1(T-H); // add mental note

-b2(T-H); // remove mental note

-+b3(T*H); // update mental note

jia.get(X); // internal action

X > 10; // constraint to carry on

close(door);// external action

!g3[hard_deadline(3000)]. // goal with deadline20
24
-1
1-
11 Jason

Plans — Operators for Plan Body



Plans — Dynamics

The plans that form the plan library of the agent come from

• initial plans defined by the programmer

• plans added dynamically and intentionally by
• .add_plan
• .remove_plan

• plans received from
• tellHow messages
• untellHow

51

Plans — Dynamics

The plans that form the plan library of the agent come from

• initial plans defined by the programmer

• plans added dynamically and intentionally by
• .add_plan
• .remove_plan

• plans received from
• tellHow messages
• untellHow20

24
-1
1-
11 Jason

Plans — Dynamics



A note about “Control”

Agents can control (manipulate) their own (and influence the others)

• beliefs

• goals

• plan

By doing so they control their behaviour

The developer provides initial values of these elements and thus also
influence the behaviour of the agent

52

A note about “Control”

Agents can control (manipulate) their own (and influence the others)

• beliefs

• goals

• plan

By doing so they control their behaviour

The developer provides initial values of these elements and thus also
influence the behaviour of the agent20

24
-1
1-
11 Jason

A note about “Control”

Object Oriented encapsulates "beliefs" and "plans", but not "goals", no “thread of

execution”



Reasoning Cycle

Reasoning Cycle

20
24
-1
1-
11 Jason



Runtime Structures for the Reasoning Cycle

Beliefs: represent the information available to an agent
(e.g. about the environment or other agents)

Goals: represent states of a�airs the agent wants to bring about

Plans: are recipes for action, representing the agent’s know-how

Events: happen as consequence to changes in the
agent’s beliefs or goals

Intentions: plans instantiated to achieve some goal

54

Runtime Structures for the Reasoning Cycle

Beliefs: represent the information available to an agent
(e.g. about the environment or other agents)

Goals: represent states of a�airs the agent wants to bring about

Plans: are recipes for action, representing the agent’s know-how

Events: happen as consequence to changes in the
agent’s beliefs or goals

Intentions: plans instantiated to achieve some goal20
24
-1
1-
11 Jason

Runtime Structures for the Reasoning Cycle

The former three come from the agent program (syntax), the latter two exist at

runtime to support the interpretation (semantics) of Jason



Basic Reasoning Cycle — runtime interpreter

Reasoning Cycle

Plan LibraryBelief Base

Action

Event Queue

flow

Percepts

Messages

IntentionsSuspended
Intentions

Select 
Event

Select 
Means

Select 
Intention

1

1

1

1

3

4

4

4

2

2 2

55

Basic Reasoning Cycle — runtime interpreter

Reasoning Cycle

Plan LibraryBelief Base

Action

Event Queue

flow

Percepts

Messages

IntentionsSuspended
Intentions

Select 
Event

Select 
Means

Select 
Intention

1

1

1

1

3

4

4

4

2

2 2

20
24
-1
1-
11 Jason

Basic Reasoning Cycle — runtime interpreter

1 perceive the environment and update belief base

1 process new messages

1 select event

2 select relevant plans

2 select applicable plans

3 create/update intention

4 select intention to execute

4 execute one step of the selected intention



Jason Reasoning Cycle

SI

Events
External

Event
Selected

SE

Beliefs to
Add and

Delete

Relevant
Plans

New Plan
Push

Intention
Updated

OS

Applicable
Plans

Means
Intended

Events
External

Plan
Library

Events

Internal
Events

3

checkMail

Intentions

Execute
Intention

...New
New

9

Belief
Base

New
Intention

Percepts

act

Selected
Intention

Intentions

Action

Percepts
1 2

BUF

10

Events

Context
Check

Event
Unify

BRF

Beliefs

Agent

sendMsg

Beliefs

8

Messages

Plans

perceive

7

5

6

Actions

Beliefs

Suspended Intentions
(Actions and Msgs)

...

.send

SocAcc

4

Messages Messages
SM

56

Jason Reasoning Cycle

SI

Events
External

Event
Selected

SE

Beliefs to
Add and

Delete

Relevant
Plans

New Plan
Push

Intention
Updated

OS

Applicable
Plans

Means
Intended

Events
External

Plan
Library

Events

Internal
Events

3

checkMail

Intentions

Execute
Intention

...New
New

9

Belief
Base

New
Intention

Percepts

act

Selected
Intention

Intentions

Action

Percepts
1 2

BUF

10

Events

Context
Check

Event
Unify

BRF

Beliefs

Agent

sendMsg

Beliefs

8

Messages

Plans

perceive

7

5

6

Actions

Beliefs

Suspended Intentions
(Actions and Msgs)

...

.send

SocAcc

4

Messages Messages
SM

20
24
-1
1-
11 Jason

Jason Reasoning Cycle



Jason Reasoning Cycle

SI

Events
External

Event
Selected

SE

Beliefs to
Add and

Delete

Relevant
Plans

New Plan
Push

Intention
Updated

OS

Applicable
Plans

Means
Intended

Events
External

Plan
Library

Events

Internal
Events

3

checkMail

Intentions

Execute
Intention

...New
New

9

Belief
Base

New
Intention

Percepts

act

Selected
Intention

Intentions

Action

Percepts
1 2

BUF

10

Events

Context
Check

Event
Unify

BRF

Beliefs

Agent

sendMsg

Beliefs

8

Messages

Plans

perceive

7

5

6

Actions

Beliefs

Suspended Intentions
(Actions and Msgs)

...

.send

SocAcc

4

Messages Messages
SM

57

• machine perception

• belief revison

• knowledge
representation

• communication,
argumentation

• trust

• social power

Jason Reasoning Cycle

SI

Events
External

Event
Selected

SE

Beliefs to
Add and

Delete

Relevant
Plans

New Plan
Push

Intention
Updated

OS

Applicable
Plans

Means
Intended

Events
External

Plan
Library

Events

Internal
Events

3

checkMail

Intentions

Execute
Intention

...New
New

9

Belief
Base

New
Intention

Percepts

act

Selected
Intention

Intentions

Action

Percepts
1 2

BUF

10

Events

Context
Check

Event
Unify

BRF

Beliefs

Agent

sendMsg

Beliefs

8

Messages

Plans

perceive

7

5

6

Actions

Beliefs

Suspended Intentions
(Actions and Msgs)

...

.send

SocAcc

4

Messages Messages
SM20

24
-1
1-
11 Jason

Jason Reasoning Cycle



Jason Reasoning Cycle

SI

Events
External

Event
Selected

SE

Beliefs to
Add and

Delete

Relevant
Plans

New Plan
Push

Intention
Updated

OS

Applicable
Plans

Means
Intended

Events
External

Plan
Library

Events

Internal
Events

3

checkMail

Intentions

Execute
Intention

...New
New

9

Belief
Base

New
Intention

Percepts

act

Selected
Intention

Intentions

Action

Percepts
1 2

BUF

10

Events

Context
Check

Event
Unify

BRF

Beliefs

Agent

sendMsg

Beliefs

8

Messages

Plans

perceive

7

5

6

Actions

Beliefs

Suspended Intentions
(Actions and Msgs)

...

.send

SocAcc

4

Messages Messages
SM

58

• planning

• reasoning

• decision theoretic
techniques

• learning
(reinforcement)

Jason Reasoning Cycle

SI

Events
External

Event
Selected

SE

Beliefs to
Add and

Delete

Relevant
Plans

New Plan
Push

Intention
Updated

OS

Applicable
Plans

Means
Intended

Events
External

Plan
Library

Events

Internal
Events

3

checkMail

Intentions

Execute
Intention

...New
New

9

Belief
Base

New
Intention

Percepts

act

Selected
Intention

Intentions

Action

Percepts
1 2

BUF

10

Events

Context
Check

Event
Unify

BRF

Beliefs

Agent

sendMsg

Beliefs

8

Messages

Plans

perceive

7

5

6

Actions

Beliefs

Suspended Intentions
(Actions and Msgs)

...

.send

SocAcc

4

Messages Messages
SM

20
24
-1
1-
11 Jason

Jason Reasoning Cycle



Jason Reasoning Cycle

SI

Events
External

Event
Selected

SE

Beliefs to
Add and

Delete

Relevant
Plans

New Plan
Push

Intention
Updated

OS

Applicable
Plans

Means
Intended

Events
External

Plan
Library

Events

Internal
Events

3

checkMail

Intentions

Execute
Intention

...New
New

9

Belief
Base

New
Intention

Percepts

act

Selected
Intention

Intentions

Action

Percepts
1 2

BUF

10

Events

Context
Check

Event
Unify

BRF

Beliefs

Agent

sendMsg

Beliefs

8

Messages

Plans

perceive

7

5

6

Actions

Beliefs

Suspended Intentions
(Actions and Msgs)

...

.send

SocAcc

4

Messages Messages
SM

59

• intention
reconsideration

• scheduling

• action theories

Jason Reasoning Cycle

SI

Events
External

Event
Selected

SE

Beliefs to
Add and

Delete

Relevant
Plans

New Plan
Push

Intention
Updated

OS

Applicable
Plans

Means
Intended

Events
External

Plan
Library

Events

Internal
Events

3

checkMail

Intentions

Execute
Intention

...New
New

9

Belief
Base

New
Intention

Percepts

act

Selected
Intention

Intentions

Action

Percepts
1 2

BUF

10

Events

Context
Check

Event
Unify

BRF

Beliefs

Agent

sendMsg

Beliefs

8

Messages

Plans

perceive

7

5

6

Actions

Beliefs

Suspended Intentions
(Actions and Msgs)

...

.send

SocAcc

4

Messages Messages
SM

20
24
-1
1-
11 Jason

Jason Reasoning Cycle



Other Features

Other Features

20
24
-1
1-
11 Jason



Failure Handling: Contingency Plans

Example (an agent blindly committed to g)

+!g : g. // g is a declarative goal

+!g : ... <- a1; ?g.
+!g : ... <- a2; ?g.
+!g : ... <- a3; ?g.

+!g <- !g. // keep trying
-!g <- !g. // in case of some failure

+g <-.succeed_goal(g).

61

Failure Handling: Contingency Plans

Example (an agent blindly committed to g)

+!g : g. // g is a declarative goal

+!g : ... <- a1; ?g.
+!g : ... <- a2; ?g.
+!g : ... <- a3; ?g.

+!g <- !g. // keep trying
-!g <- !g. // in case of some failure

+g <-.succeed_goal(g).20
24
-1
1-
11 Jason

Failure Handling: Contingency Plans



Failure Handling: Contingency Plans

Example (single minded commitment)

+!g : g. // g is a declarative goal

+!g : ... <- a1; ?g.
+!g : ... <- a2; ?g.
+!g : ... <- a3; ?g.

+!g <- !g. // keep trying
-!g <- !g. // in case of some failure

+g <-.succeed_goal(g).

+f : .super_goal(g,SG) <-.fail_goal(SG).

f is the drop condition for goal g

61

Failure Handling: Contingency Plans

Example (single minded commitment)

+!g : g. // g is a declarative goal

+!g : ... <- a1; ?g.
+!g : ... <- a2; ?g.
+!g : ... <- a3; ?g.

+!g <- !g. // keep trying
-!g <- !g. // in case of some failure

+g <-.succeed_goal(g).

+f : .super_goal(g,SG) <-.fail_goal(SG).

f is the drop condition for goal g

20
24
-1
1-
11 Jason

Failure Handling: Contingency Plans



Compiler pre-processing – directives

Example (single minded commitment)

{ begin smc(g,f) }
+!g : ... <- a1.
+!g : ... <- a2.
+!g : ... <- a3.

{ end }

62

Compiler pre-processing – directives

Example (single minded commitment)

{ begin smc(g,f) }
+!g : ... <- a1.
+!g : ... <- a2.
+!g : ... <- a3.

{ end }

20
24
-1
1-
11 Jason

Compiler pre-processing – directives



Meta Programming

Example (an agent that asks for plans on demand)

-!G[error(no_relevant)] : teacher(T)
<- .send(T, askHow, { +!G }, Plans);

.add_plan(Plans);
!G.

in the event of a failure to achieve any goal G due to no relevant plan,
asks a teacher for plans to achieve G and then try G again

• The failure event is annotated with the error type, line, source, ...
error(no_relevant) means no plan in the agent’s plan library to
achieve G

• { +!G } is the syntax to enclose triggers/plans as terms

63

Meta Programming

Example (an agent that asks for plans on demand)

-!G[error(no_relevant)] : teacher(T)
<- .send(T, askHow, { +!G }, Plans);

.add_plan(Plans);
!G.

in the event of a failure to achieve any goal G due to no relevant plan,
asks a teacher for plans to achieve G and then try G again

• The failure event is annotated with the error type, line, source, ...
error(no_relevant) means no plan in the agent’s plan library to
achieve G

• { +!G } is the syntax to enclose triggers/plans as terms

20
24
-1
1-
11 Jason

Meta Programming



Other Language Features: Strong Negation

+!leave(home)
: ~raining
<- open(curtains); ...

+!leave(home)
: not raining & not ~raining
<- .send(mum,askOne,raining,Answer,3000); ...

64

Other Language Features: Strong Negation

+!leave(home)
: ~raining
<- open(curtains); ...

+!leave(home)
: not raining & not ~raining
<- .send(mum,askOne,raining,Answer,3000); ...

20
24
-1
1-
11 Jason

Other Language Features: Strong Negation



Prolog-like Rules in the Belief Base

tall(X) :- woman(X) & height(X, H) & H > 1.70.
tall(X) :- man(X) & height(X, H) & H > 1.80.

65

Prolog-like Rules in the Belief Base

tall(X) :- woman(X) & height(X, H) & H > 1.70.
tall(X) :- man(X) & height(X, H) & H > 1.80.

20
24
-1
1-
11 Jason

Prolog-like Rules in the Belief Base



Internal Actions

• Unlike actions, internal actions do not change the environment

• They are executed as part of the agent reasoning cycle

• AgentSpeak is meant as a high-level language for the agent’s
practical reasoning and internal actions can be used for invoking
legacy code elegantly

• Internal actions can be defined by the user in Java

libname.action_name(. . .)

66

Internal Actions

• Unlike actions, internal actions do not change the environment

• They are executed as part of the agent reasoning cycle

• AgentSpeak is meant as a high-level language for the agent’s
practical reasoning and internal actions can be used for invoking
legacy code elegantly

• Internal actions can be defined by the user in Java

libname.action_name(. . .)20
24
-1
1-
11 Jason

Internal Actions



Standard Internal Actions

• Standard (pre-defined) internal actions have an empty library
name

• .print(term1, term2, . . .)
• .union(list1, list2, list3)
• .my_name(var)
• .send(ag,perf,literal)
• .intend(literal)
• .drop_intention(literal)

• Many others available for: printing, sorting, list/string operations,
manipulating the beliefs/annotations/plan library, creating agents,
waiting/generating events, etc.

67

Standard Internal Actions

• Standard (pre-defined) internal actions have an empty library
name

• .print(term1, term2, . . .)
• .union(list1, list2, list3)
• .my_name(var)
• .send(ag,perf,literal)
• .intend(literal)
• .drop_intention(literal)

• Many others available for: printing, sorting, list/string operations,
manipulating the beliefs/annotations/plan library, creating agents,
waiting/generating events, etc.20

24
-1
1-
11 Jason

Standard Internal Actions



Namespaces & Modularity

68

Namespaces & Modularity

20
24
-1
1-
11 Jason

Namespaces & Modularity



Namespaces & Modularity

{include("initiator.asl", pc)}
{include("initiator.asl", tv)}

!pc::startCNP(fix(pc)).
!tv::startCNP(fix(tv)).

+pc::winner(X)
<- .print(X).

69

Namespaces & Modularity

{include("initiator.asl", pc)}
{include("initiator.asl", tv)}

!pc::startCNP(fix(pc)).
!tv::startCNP(fix(tv)).

+pc::winner(X)
<- .print(X).

20
24
-1
1-
11 Jason

Namespaces & Modularity



Concurrent Plans

+!ga <- ...; !gb; ...
+!gb <- ...; !g1 |&| !g2; a1; ...

+!ga <- ...; !gb; ...
+!gb <- ...; !g1 ||| !g2; a1; ...

+!g <- x; (a;b) |&| (c;d) ||| (e;f); y.

70

Concurrent Plans

+!ga <- ...; !gb; ...
+!gb <- ...; !g1 |&| !g2; a1; ...

+!ga <- ...; !gb; ...
+!gb <- ...; !g1 ||| !g2; a1; ...

+!g <- x; (a;b) |&| (c;d) ||| (e;f); y.

20
24
-1
1-
11 Jason

Concurrent Plans



Jason(ER) — motivation

+cfp(Id,Task)[source(A)] // answer to Call For Proposal
: price(Task,Offer) & not my_offer(Task)

<- +offered(Task);
.send(A,tell,propose(Id,Offer)).

+cfp(Id,_)[source(A)]
<- .send(A,tell,refuse(Id)).

+accept_proposal(Id) : my_offer(Task)
<- !do(Task);

-my_offer(Task).

+reject_proposal(Id) : my_offer(Task)
<- -my_offer(Task).

71

Jason(ER) — motivation

+cfp(Id,Task)[source(A)] // answer to Call For Proposal
: price(Task,Offer) & not my_offer(Task)

<- +offered(Task);
.send(A,tell,propose(Id,Offer)).

+cfp(Id,_)[source(A)]
<- .send(A,tell,refuse(Id)).

+accept_proposal(Id) : my_offer(Task)
<- !do(Task);

-my_offer(Task).

+reject_proposal(Id) : my_offer(Task)
<- -my_offer(Task).

20
24
-1
1-
11 Jason

Jason(ER) — motivation

- what is the goal related to the action .send(A,tell,propose(Id,O�er))
- when executing actions for goal “do”, if we ask “why” we can track back to
accepted_ proposal, but not to the cfp or even some implicit goal that is “partic-
ipate in CNP”

- some jason intentions have no explicit goal
- no explicit causal link among plans



Scope & sub-plans & goal conditions

+!g(X) : c <: gc <- a1; !g1.
{

+e : c1 <- a2(X).
+!g1 ....

}

72

Scope & sub-plans & goal conditions

+!g(X) : c <: gc <- a1; !g1.
{

+e : c1 <- a2(X).
+!g1 ....

}

20
24
-1
1-
11 Jason

Scope & sub-plans & goal conditions

- main objective: all behaviour is the result of an (explicit) goal
(not a Jason intention, that can have no explicit goal)

- new syntax: goal condition after <: and sub-plans enclosed by { and }

- relevant event are defined by the current intentions
- event +e is relevant only the agent intends g
- relevant plans are defined by the scope of some goal
- plan for g1 is visible only in scope of g
- g is dropped only when gc is true: maintenance goal

- variables have a broader scope (X is visible in sub-plans



Example of a participant in a CNP

+!participate_cnp <: false. {
+cfp(Id,Task)[source(A)] // answer to Call For Proposal

: price(Task,Offer) & not my_offer(Task,_)
<: false
<- +my_offer(Task, Offer); .send(A,tell,propose(Id,Offer)).
{
+accept_proposal(Id) <- !do(Task); -my_offer(Task,_); .done.

+reject_proposal(Id) <- -my_offer(Task,_); .done.
}

+cfp(Id,_)[source(A)] <- .send(A,tell,refuse(Id)).

+!do(T) <- ...
}

73

Example of a participant in a CNP

+!participate_cnp <: false. {
+cfp(Id,Task)[source(A)] // answer to Call For Proposal

: price(Task,Offer) & not my_offer(Task,_)
<: false
<- +my_offer(Task, Offer); .send(A,tell,propose(Id,Offer)).
{
+accept_proposal(Id) <- !do(Task); -my_offer(Task,_); .done.

+reject_proposal(Id) <- -my_offer(Task,_); .done.
}

+cfp(Id,_)[source(A)] <- .send(A,tell,refuse(Id)).

+!do(T) <- ...
}

20
24
-1
1-
11 Jason

Example of a participant in a CNP

- the intention for +participate_cfp never finishes
- e-plan for +cfp is triggered only if the agent has goal participate_cnp
- the progression of the intention due to +cfp is finished only by .done, since the
goal condition (‘false’) will never hold
- the e-plans enclosed by { and } are relevant only while the progression for +cfp
is “running”
- consider that some progress in the intention is created from cfp(10,"banana"),
only events accept_proposal(10) and reject_proposal(10) are relevant to trigger
the subplans.

- enforce that every behaviour is due to a goal



Jason Customisations

• Agent class customisation:
selectMessage, selectEvent, selectOption, selectIntention, buf, brf,
...

• Agent architecture customisation:
perceive, act, sendMsg, checkMail, ...

• Belief base customisation:
add, remove, contains, ...

• Example available with Jason: persistent belief base (in text files, in
data bases, ...)

74

Jason Customisations

• Agent class customisation:
selectMessage, selectEvent, selectOption, selectIntention, buf, brf,
...

• Agent architecture customisation:
perceive, act, sendMsg, checkMail, ...

• Belief base customisation:
add, remove, contains, ...

• Example available with Jason: persistent belief base (in text files, in
data bases, ...)20

24
-1
1-
11 Jason

Jason Customisations



Jason × Java

Consider a very simple robot with two goals:

• when a piece of gold is seen, go to it

• when battery is low, go charge it

75

Jason × Java

Consider a very simple robot with two goals:

• when a piece of gold is seen, go to it

• when battery is low, go charge it

20
24
-1
1-
11 Comparison with other paradigms

Jason × Java



Java code – go to gold

public class Robot extends Thread {
boolean seeGold, lowBattery;
public void run() {

while (true) {
while (! seeGold) {

a = randomDirection();
doAction(go(a));

}
while (seeGold) {

a = selectDirection();

doAction(go(a));

} } } }
76

Java code – go to gold

public class Robot extends Thread {
boolean seeGold, lowBattery;
public void run() {

while (true) {
while (! seeGold) {

a = randomDirection();
doAction(go(a));

}
while (seeGold) {

a = selectDirection();

doAction(go(a));

} } } }

20
24
-1
1-
11 Comparison with other paradigms

Java code – go to gold



Java code – charge battery

public class Robot extends Thread {
boolean seeGold, lowBattery;
public void run() {

while (true) {
while (! seeGold) {

a = randomDirection();
doAction(go(a));
if (lowBattery) charge();

}
while (seeGold) {

a = selectDirection();
if (lowBattery) charge();
doAction(go(a));
if (lowBattery) charge();

} } } }
77

Java code – charge battery

public class Robot extends Thread {
boolean seeGold, lowBattery;
public void run() {

while (true) {
while (! seeGold) {

a = randomDirection();
doAction(go(a));
if (lowBattery) charge();

}
while (seeGold) {

a = selectDirection();
if (lowBattery) charge();
doAction(go(a));
if (lowBattery) charge();

} } } }

20
24
-1
1-
11 Comparison with other paradigms

Java code – charge battery



Jason code

direction(gold) :- see(gold).
direction(random) :- not see(gold).

+!find(gold) // long term goal
<- ?direction(A);

go(A);
!find(gold).

+battery(low) // reactivity
<- !charge.

ˆ!charge[state(executing)] // goal meta-events
<- .suspend(find(gold)).

ˆ!charge[state(finished)]
<- .resume(find(gold)).

78

Jason code

direction(gold) :- see(gold).
direction(random) :- not see(gold).

+!find(gold) // long term goal
<- ?direction(A);

go(A);
!find(gold).

+battery(low) // reactivity
<- !charge.

ˆ!charge[state(executing)] // goal meta-events
<- .suspend(find(gold)).

ˆ!charge[state(finished)]
<- .resume(find(gold)).

20
24
-1
1-
11 Comparison with other paradigms

Jason code



Jason × Prolog

• With the Jason extensions, nice separation of theoretical and
practical reasoning

• BDI architecture allows
• long-term goals (goal-based behaviour)
• reacting to changes in a dynamic environment
• handling multiple foci of attention (concurrency)

• Acting on an environment and a higher-level conception of a
distributed system

79

Jason × Prolog

• With the Jason extensions, nice separation of theoretical and
practical reasoning

• BDI architecture allows
• long-term goals (goal-based behaviour)
• reacting to changes in a dynamic environment
• handling multiple foci of attention (concurrency)

• Acting on an environment and a higher-level conception of a
distributed system20

24
-1
1-
11 Comparison with other paradigms

Jason × Prolog



Further Resources

• https://jason-lang.github.io

• R.H. Bordini, J.F. Hübner, and
M. Wooldrige
Programming Multi-Agent Systems in
AgentSpeak using Jason
John Wiley & Sons, 2007.

80

Further Resources

• https://jason-lang.github.io

• R.H. Bordini, J.F. Hübner, and
M. Wooldrige
Programming Multi-Agent Systems in
AgentSpeak using Jason
John Wiley & Sons, 2007.

20
24
-1
1-
11 Comparison with other paradigms

Further Resources

Besides the JaCaMo book (which has chapters dedicated to the agent dimension,

the Jason book is all focused on this dimension

https://jason-lang.github.io
https://jason-lang.github.io


Bibliography i

Bordini, R. H., Braubach, L., Dastani, M., Fallah-Seghrouchni,
A. E., Gómez-Sanz, J. J., Leite, J., O’Hare, G. M. P., Pokahr, A., and
Ricci, A. (2006).
A survey of programming languages and platforms for multi-agent
systems.
Informatica (Slovenia), 30(1):33–44.

Bordini, R. H., Dastani, M., Dix, J., and Fallah-Seghrouchni, A. E.,
editors (2005).
Multi-Agent Programming: Languages, Platforms and Applications,
volume 15 of Multiagent Systems, Artificial Societies, and Simulated
Organizations.
Springer.

81

Bibliography i

Bordini, R. H., Braubach, L., Dastani, M., Fallah-Seghrouchni,
A. E., Gómez-Sanz, J. J., Leite, J., O’Hare, G. M. P., Pokahr, A., and
Ricci, A. (2006).
A survey of programming languages and platforms for multi-agent
systems.
Informatica (Slovenia), 30(1):33–44.

Bordini, R. H., Dastani, M., Dix, J., and Fallah-Seghrouchni, A. E.,
editors (2005).
Multi-Agent Programming: Languages, Platforms and Applications,
volume 15 of Multiagent Systems, Artificial Societies, and Simulated
Organizations.
Springer.

20
24
-1
1-
11 Comparison with other paradigms

Bibliography



Bibliography ii

Bordini, R. H., Dastani, M., Dix, J., and Fallah-Seghrouchni, A. E.,
editors (2009).
Multi-Agent Programming: Languages, Tools and Applications.
Springer.

Bordini, R. H., Hübner, J. F., and Wooldridge, M. (2007).
Programming Multi-Agent Systems in AgentSpeak Using Jason.
Wiley Series in Agent Technology. John Wiley & Sons.

Bratman, M. E. (1987).
Intention, Plans, and Practical Reason.
Harvard University Press, Cambridge.

82

Bibliography ii

Bordini, R. H., Dastani, M., Dix, J., and Fallah-Seghrouchni, A. E.,
editors (2009).
Multi-Agent Programming: Languages, Tools and Applications.
Springer.

Bordini, R. H., Hübner, J. F., and Wooldridge, M. (2007).
Programming Multi-Agent Systems in AgentSpeak Using Jason.
Wiley Series in Agent Technology. John Wiley & Sons.

Bratman, M. E. (1987).
Intention, Plans, and Practical Reason.
Harvard University Press, Cambridge.20

24
-1
1-
11 Comparison with other paradigms

Bibliography



Bibliography iii

Bratman, M. E., Israel, D. J., and Pollack, M. E. (1988).
Plans and resource-bounded practical reasoning.
Computational Intelligence, 4:349–355.

Cohen, P. R. and Levesque, H. J. (1987).
Intention = choice + commitment.
In Proceedings of the 6th National Conference on Artificial Intelligence,
pages 410–415. Morgan Kaufmann.

Dastani, M. (2008).
2apl: a practical agent programming language.
Autonomous Agents and Multi-Agent Systems, 16(3):214–248.

83

Bibliography iii

Bratman, M. E., Israel, D. J., and Pollack, M. E. (1988).
Plans and resource-bounded practical reasoning.
Computational Intelligence, 4:349–355.

Cohen, P. R. and Levesque, H. J. (1987).
Intention = choice + commitment.
In Proceedings of the 6th National Conference on Artificial Intelligence,
pages 410–415. Morgan Kaufmann.

Dastani, M. (2008).
2apl: a practical agent programming language.
Autonomous Agents and Multi-Agent Systems, 16(3):214–248.20

24
-1
1-
11 Comparison with other paradigms

Bibliography



Bibliography iv

Fisher, M. (2005).
Metatem: The story so far.
In PROMAS, pages 3–22.

Fisher, M., Bordini, R. H., Hirsch, B., and Torroni, P. (2007).
Computational logics and agents: A road map of current
technologies and future trends.
Computational Intelligence, 23(1):61–91.

Giacomo, G. D., Lespérance, Y., and Levesque, H. J. (2000).
Congolog, a concurrent programming language based on the
situation calculus.
Artif. Intell., 121(1-2):109–169.

84

Bibliography iv

Fisher, M. (2005).
Metatem: The story so far.
In PROMAS, pages 3–22.

Fisher, M., Bordini, R. H., Hirsch, B., and Torroni, P. (2007).
Computational logics and agents: A road map of current
technologies and future trends.
Computational Intelligence, 23(1):61–91.

Giacomo, G. D., Lespérance, Y., and Levesque, H. J. (2000).
Congolog, a concurrent programming language based on the
situation calculus.
Artif. Intell., 121(1-2):109–169.20

24
-1
1-
11 Comparison with other paradigms

Bibliography



Bibliography v

Hindriks, K. V. (2009).
Programming rational agents in GOAL.
In [Bordini et al., 2009], pages 119–157.

Hindriks, K. V., de Boer, F. S., van der Hoek, W., and Meyer, J.-J. C.
(1997).
Formal semantics for an abstract agent programming language.
In Singh, M. P., Rao, A. S., and Wooldridge, M., editors, ATAL,
volume 1365 of Lecture Notes in Computer Science, pages 215–229.
Springer.

Pokahr, A., Braubach, L., and Lamersdorf, W. (2005).
Jadex: A bdi reasoning engine.
In [Bordini et al., 2005], pages 149–174.

85

Bibliography v

Hindriks, K. V. (2009).
Programming rational agents in GOAL.
In [Bordini et al., 2009], pages 119–157.

Hindriks, K. V., de Boer, F. S., van der Hoek, W., and Meyer, J.-J. C.
(1997).
Formal semantics for an abstract agent programming language.
In Singh, M. P., Rao, A. S., and Wooldridge, M., editors, ATAL,
volume 1365 of Lecture Notes in Computer Science, pages 215–229.
Springer.

Pokahr, A., Braubach, L., and Lamersdorf, W. (2005).
Jadex: A bdi reasoning engine.
In [Bordini et al., 2005], pages 149–174.

20
24
-1
1-
11 Comparison with other paradigms

Bibliography



Bibliography vi

Rao, A. S. (1996).
Agentspeak(l): Bdi agents speak out in a logical computable
language.
In de Velde, W. V. and Perram, J. W., editors, MAAMAW, volume
1038 of Lecture Notes in Computer Science, pages 42–55. Springer.

Rao, A. S. and George�, M. P. (1995).
BDI agents: from theory to practice.
In Lesser, V., editor, Proceedings of the First International Conference on
MultiAgent Systems (ICMAS’95), pages 312–319. AAAI Pess.

Shoham, Y. (1993).
Agent-oriented programming.
Artif. Intell., 60(1):51–92.

86

Bibliography vi

Rao, A. S. (1996).
Agentspeak(l): Bdi agents speak out in a logical computable
language.
In de Velde, W. V. and Perram, J. W., editors, MAAMAW, volume
1038 of Lecture Notes in Computer Science, pages 42–55. Springer.

Rao, A. S. and George�, M. P. (1995).
BDI agents: from theory to practice.
In Lesser, V., editor, Proceedings of the First International Conference on
MultiAgent Systems (ICMAS’95), pages 312–319. AAAI Pess.

Shoham, Y. (1993).
Agent-oriented programming.
Artif. Intell., 60(1):51–92.

20
24
-1
1-
11 Comparison with other paradigms

Bibliography



Bibliography vii

Winiko�, M. (2005).
Jack intelligent agents: An industrial strength platform.
In [Bordini et al., 2005], pages 175–193.

Wooldridge, M. (2009).
An Introduction to MultiAgent Systems.
John Wiley and Sons, 2nd edition.

87

Bibliography vii

Winiko�, M. (2005).
Jack intelligent agents: An industrial strength platform.
In [Bordini et al., 2005], pages 175–193.

Wooldridge, M. (2009).
An Introduction to MultiAgent Systems.
John Wiley and Sons, 2nd edition.

20
24
-1
1-
11 Comparison with other paradigms

Bibliography


	Fundamentals
	Jason
	Comparison with other paradigms

