
REACTIVE REASONING AND PLANNING

Micha.el P. Georgeff
Amy L. Lansky

Artificial Intelligence Center, SRI International
333 Ravenswood Avenue, Menlo Park, California

Center for the Study of Language and Information, Stanford University

Abstract

In this paper, the reasoning and planning capabilities of an au-
tonomous mobile robot are described; The reasoning system
that controls the robot is designed to exhibit the kind of be-
havior expected of a rational agent, and is endowed with the
psychological attitudes of belief, desire, and intention. Because
these attitudes are explicitly represented, they can be manipu-
lated and reasoned about, resulting in complex goal-directed and
reflective behaviors. Unlike most planning systems, the plans or
intentions formed by the robot need only be partly elaborated
before it decides to act. This allows the robot to avoid overly
strong expectations about the environment, overly constrained
plans of action, and other forms of overcommitment common
to previous planners. In addition, the robot is continuously re-
active and has the ability to change its goals and intentions as
situations warrant. The system has been tested with SRI’s au-
tonomous robot (Flakey) in a space station scenario involving
navigation and the performance of emergency tasks.

1 Introduction

The ability to act appropriately in dynamic environments is crit-
ical for the survival of all living creatures. For lower life forms, it
seems that sufficient capability is provided by stimulus-response
and feedback mechanisms. Higher life forms, however, must be
able to anticipate future events and situations, and form plans
of action to achieve their goals. The design of reasoning and
planning systems that are embedded in the world and must op-
erate effectively under real-time constraints can thus be seen as
fundamental to the development of intelligent autonomous ma-
chines.

In this paper, we describe a system for reasoning about and
performing complex tasks in dynamic environments, and show
how it can be applied to the control of an autonomous mobile
robot. The system, called a Procedural Reasoning System (PRS),
is endowed with the attitudes of belief, desire, and intention. At
any given instant, the actions being considered by PRS depend
not only on its current desires or goals, but also on its beliefs and
previously formed intentions. PRS also has the ability to reason
about its own internal state - that is, to reflect upon its own
beliefs, desires, and intentions, modifying these as it chooses.

This research has been made possible by a giftifrom the System Devel-
opment Foundation, the Office of Naval Research under Contract N00014-
85-C-0251, by the National Aeronautics and Space Administration, Ames
Research Center, under Contract NAS2-12521, and FMC under Contiact
FMC-147466.

This architecture allows PRS to reason about means and ends
in much the same way as do traditional planners, but provides
the reactivity that is essential for survival in highly dynamic and
uncertain worlds.

For our the task domain, we envisaged a robot in a space sta-
tion, fulfilling the role of an astronaut’s assistant. When asked
to get a wrench, for example, the robot determines where the
wrench is kept, plans a route to that location, and goes there. If
the wrench is not where expected, the robot may reason further
about how to obtain information as to its whereabouts. It then
either returns to the astronaut with the desired tool or explains
why it could not be retrieved. In another scenario, the robot
may be midway through the ta.sk of retrieving the wrench when
it notices a malfunction light for one of the jets in the reactant
control system of the space station. It reasons that handling this
malfunction is a higher-priority task than retrieving the wrench
and therefore sets about diagnosing the fault and correcting it.
Having done this, it resumes its original ta.sk, finally telling the
astronaut.

To accomplish these tasks, the robot must not only be able
to create and execute plans, but must be willing to interrupt
or abandon a plan when circumstances demand it. Moreover,
because the robot’s world is continuously changing and other
agents and processes can issue demands at arbitrary times, per-
formance of these tasks requires an architecture that is both
highly reactive and goal-directed.

We have used PRS with the new SRI robot, Flakey, to ex-
hibit much of the behavior described in the foregoing scenarios,
including both the navigational and malfunction-handling tasks
[S]. In this paper, we concentrate on the navigational task; the
know&edge base used for jet malfunction handling is described
elsewhere [G ,7].

2 Previous Approaches

Most existing architectures for embedded planning systems con
sist of a plan constructor and a plan executor. As a rule, the
plan constructor formulates an entire course of action before
commencing execution of the plan [5,12,14]. The plan itself is
typically composed of primitive actions - that is, actions that
are directly performable by the system. The rationale foflthis
approach, of course, is to ensure that the planned sequence of
actions will actually achieve the prescribed goal. As the plan is
executed, the system performs these primitive actions by calling
various low-level routines. Execution is usually monitored to
ensure that these routines will culminate in the desired effects;

Georgeff and Lansky 677

From: AAAI-87 Proceedings. Copyright ©1987, AAAI (www.aaai.org). All rights reserved.

if they do not, the system can return control to the plan con-
structor so that it may modify the existing plan appropriately.

One problem with these schemes is that, in many domains,
much of the information about how best to achieve a given goal is
acquired during plan execution. For example, in planning to get
from home to the airport, the particular sequence of actions to be
performed depends on information acquired on the way - such as
which turnoff to take, which lane to get into, when to slow down
or speed up, and so on. To overcome this problem, at least in
part, there has been some work on developing planning systems
that interleave plan formation and execution [3,4]. Such systems
are better suited to uncertain worlds than the kind of system
described above, as decisions can be deferred until they have to
be made. The reason for deferring decisions is that an agent can
acquire more information as time passes; thus, the quality of its
decisions can be expected only to improve. Of course, because of
the need to coordinate some activities in advance and because of
practical restrictions on the amount of decision-making that ca.n
be accommodated during task execution, there are limitations
on the degree to which such decisions may be deferred.

Real-time constraints pose yet further problems for tradition-
ally structured systems. First, the planning techniques typically
used by these systems are very time-consuming, requiring ex-
ponential search through potentially enormous problem spaces.
While this may be acceptable in some situations, it is not suited
to domains where replanning is frequently necessary and where
system viability depends on readiness to act.

In addition, most existing systems are overcommitted to the
planning phase of their operations; no matter what the situation
or how urgent the need for action, these systems always spend
as much time as necessary to plan and reason about achieving
a given goal before performing any external actions whatsoever.
They lack the ability to decide when to stop planning or to rea-
son about possible compromises between further planning and
longer available execution time.

replan so as to accomplish fixed goals, they are unable to change
their focus completely and pursue new goals when the situation
warrants. Indeed, the very survival of an autonomous system
may depend on its ability to modify its goals and intentions
according to the situation.

A number of systems developed for the control of robots do
have a high degree of reactivity [l]. Even SHAKEY [lo] uti-
lized reactive procedures (ILAs) to realize the primitive actions
of the high-level planner (STRIPS). This idea is pursued fur-
ther in some recent work by Nilsson [ll]. Another approach
is advocated by Brooks [2], who proposes decomposition of the
problem into task-achieving units whereby distinct behaviors of
the robot are realized separately, each making use of the robot’s
sensors, effecters, and reasoning capabilities as needed. Kael-
bling [9] proposes an interesting hybrid architecture based on
similar ideas.

These kinds of architectures could lead to more viable and ro-
bust systems than the traditional robot-control systems. Yet
most of this work has not addressed the issues of general
problem-solving a.nd commonsense reasoning; the research is in-
stead almost exclusively devoted to problems of navigation and
the execution of low-level actions. These techniques have yet
to be extended or integrated with systems that can change goal
priorities completely, modify, defer, or abandon its plans, and
reason about what is best to do in light of the immediate situa-
tion.

In sum, existing planning systems incorporate many useful
techniques for constructing plans of action in a great variety of
domains. However, most approaches to embedding these plan-
ners in dynamic environments are not robust enough nor suffi-
ciently reactive to be useful in many real-world applications. On
the other hand, the more reactive systems developed in robotics
are well suited to handling the low-level sensor and effector ac-
tivities of a robot. Nevertheless, it is not yet clear how these
techniques could be used for performing some of the higher-
level reasoning desired of complex problem-solving systems. To
reconcile these two extremes, it is necessary to develop reactive
reasoning and planning systems that can utilize both kinds of
capabilities whenever they are needed.

3 A Reactive Planning System

Traditional planning systems also rely excessively on con-
strutting plans solely from knowledge about the primitive ac-
tions performable by the robot. However, many plans are not
constructed from first principles, but have been acquired in a
variety of other ways - for example, by being told, by learning,
or through training. Furthermore, these plans may be very com-
plex, involving a variety of control constructs (such as iteration
and recursion) that are normally not part of the repertoire of
conventional planning systems. Thus, although it is obviously
desirable that an embedded system be capable of forming plans
from first principles, it is also important that the system pos-
sess a wealth of precompiled procedural lcnowleclge about how to
function in the world [6].

The real-time constraints imposed by dynamic environments
also require that a situated system be able to react quickly to en-
vironmental changes. This means that the system should be able
to notice critical changes in the environment within an appropri-
ately small interval of time. However, most embedded planning
systems provide no mechanisms for reacting in a timely man-
ner to new situations or goals during plan execution, let alone
during plan formation.

Another disadvantage of most systems is that they commit
themselves strongly to the plans they have adopted. While such
systems may be reactive in the limited sense of being able to

The system we used for controlling and carrying out the high-
level reasoning of the robot is called a Procedural Reasoning
System (PRS) [6,7]. The system consists of a data base con-
taining current beliefs or facts about the world, a set of current
goals or desires to be realized, a set of procedures (which, for
historical reasons, are called knowledge ureas or KAs) describing
how certain sequences of actions and tests may be performed
to achieve given goals or to react to particular situations, and
an interpreter (or inference mechanism) for manipulating these
components. At any moment, the system will also have a process
stuck (containing all currently active KAs) which can be viewed
as the system’s current intentions for achieving its goals or re-
acting to some observed situation. The basic structure of PRS
is shown in Figure 1. A brief description of each component and
its usage is given below.

678 Robotics

Alessandro Ricci

Alessandro Ricci

Alessandro Ricci

Alessandro Ricci

Alessandro Ricci

Alessandro Ricci

Alessandro Ricci

Figure 1: System Structure

3.1 The System Data Base

The contents of the PRS data base may be viewed as represent-
ing the current beliefs of the system. Some of these beliefs may
be provided initially by the system user. Typically, these will
include facts about static properties of the application domain
- for example, the structure of some subsystem, or the physical
laws that some mechanical components must obey. Other be-
liefs are derived by PRS itself as it executes its KAs. These will
typically be current observations about the world or conclusions
derived by the system from these observations.

The data base itself consists of a set of state descriptions de-
scribing what is believed to be true at the current instant of
time. We use first-order predicate calculus for the state descrip-
tion language. Data base queries are handled using unification
over the set of data base facts. State descriptions that describe
internal system states are called metalevel expressions. The ba-
sic metalevel predicates and functions are predefined by the sys-
tem. For example, the metalevel expression (goal g> is true if
g is a current goal of the system.

3.2 Goals

Goals appear both on the system goal stack and in the represen-
tation of KAs. Unlike most AI planning systems, PRS goals rep-
resent desired behaviors of the system, rather than static world
states that are to be [eventually] achieved. Hence goals are ex-
pressed as conditions on some interval of time (i.e., on some
sequence of world states).

Goal behaviors may be described in two ways. One is to apply
a temporal predicate to an n-tuple of terms. Each temporal pred-
icate denotes an action type or a set of state sequences. That
is, an expression like “(walk a b)” can be considered to denote
the set of state sequences which embody walking actions from
point a to b.

A behavior description can also be formed by applying a tem-
poral operator to a state description. Three temporal opera-
tors are currently used. The expression (! p> , where p is some
state description (possibly involving logical connectives), is true

of a sequence of states if p is true of the last state in the se-
quence; that is, it denotes those behaviors that achieve p. Thus
we might use the behavior description (! (walked a b) > rather
than (walk a b). Similarly, (?p> is true if p is true of the first
state in the sequence - that is, it can be considered to denote
those behaviors that result from a successful test for p. Finally,
(#p> is true if p is preserved (maintained invariant) through-
out the sequence. Behavior descriptions can be combined using
the logical operators A a.nd V. These denote, respectively, the
intersection and union of the composite behaviors.

As with state descriptions, behavior descriptions are not re-
stricted to describing the external environment, but can also be
used to describe the internal behavior of the system. Such be-
havior specifications are called metalevel behavior specifica.tions.
One important metalevel behavior is described by an expression
of the form (=> p>. This specifies a behavior that places the
state description p in the system data base. Another way of
describing this behavior might be (! (belief p> 1.

3.3 Knowledge Areas

Knowledge about how to accomplish given goals or react to cer-
tain situations is represented in PRS by declarative procedure
specifications called ICnowledge Areas (KAs). Each KA consists
of a body, which describes the steps of the procedure, and an in-
vocation condition that specifies under what situations the KA
is useful.

The body of a KA is represented as a graphic network and can
be viewed as a plan or plan schema. However, it differs in a very
important way from the plans produced by most AI planners: it
does not consist of possible sequences of primitive actions, but
rather of possible sequences of subgoals to be achieved. Thus,
the bodies of KAs are much more like the high-level “operators”
used in traditional planning systems [13]. They differ in that (1)
the subgoals appearing in the body can be described by complex
temporal expressions and (2) the allowed control constructs are
richer and include conditionals, loops, and recursion.

The invocation part of a KA contains an arbitrarily complex
logical expression describing under what conditions the KA is
useful. Usually this consists of some conditions on current sys-
tem goals (in which case, the KA is invoked in a goal-directed
fashion) or current system beliefs (resulting in data-directed or
reactive invocation), and may involve both. Together the invo-
cation condition and body of a KA express a declarative fact
about the effects of performing certain sequences of actions un-
der certain conditions.

The set of KAs in a PRS application system not only con-
sists of procedural knowledge about a specific domain, but also
includes metalevel KAs - that is, information about the ma-
nipulation of the beliefs, desires, and intentions of PRS itself.
For example, typical metalevel KAs encode various methods
for choosing among multiple relevant KAs, determining how to
achieve a conjunction of goals, and computing the amount of ad-
ditional reasoning that can be undertaken, given the real-time
constraints of the problem domain. Metalevel KAs may of course
utilize knowledge specifically related to the problem doma.in. In
a.ddition to user-supplied KAs, each PRS application contains a
set of system-defined default KAs. These are typically domain-
independent metalevel KAs.

Georgeff and Lansky 679

Alessandro Ricci

Alessandro Ricci

Alessandro Ricci

Alessandro Ricci

Alessandro Ricci

Alessandro Ricci

Alessandro Ricci

Alessandro Ricci

Alessandro Ricci

Alessandro Ricci

3.4 The System Interpreter

The PRS interpreter runs the entire system. From a conceptual
standpoint, it operates in a relatively simple way. At any par-
ticular time, certain goals are active in the system and certain
beliefs are held in the system data base. Given these extant
goals and beliefs, a subset of KAs in the system will be relevant
(i.e., applicable). One of these relevant KAs will then be chosen
for execution by placing it on the process stack.

GO-TO

(a (office Sperson Stroom) (in-hall Stroom Sthall Stside stpo~)
(in-wine Sthall Stwing)))

(8, (robot-in-room Sfroom) (in-hall Sfroom tfhall Sfside sfpos)))

In the course of executing the-chosen KA, new subgoals will
be posted and new beliefs derived. When new goals are pushed
onto the goal stack, the interpreter checks to see if any new KAs
are relevant, chooses one, places it on the process stack, and
begins executing it. Likewise, whenever a new belief is added to
the data base, the interpreter will perform appropriate consis-
tency maintenance procedures and possibly activate other rel-
evant KAs. During this process, various metalevel KAs may
also be called upon to make choices among alternative paths of
execution, choose among multiple applicable KAs, decompose
composite goals into achievable components, and make other
decisions.

> (destination Stroom Wall ttwing))

(say “Just a moment, I’m planning my

Man-path Sthall Stroom))

(room-left Sfroom))

(! (follow-plan))

0
Bnd

This results in an interleaving of plan selection, formation,
and execution. In essence, the system forms a partial overall
plan, determines a means of accomplishing the first subgoal of
the plan, acts on this, further expands the near-term plan of
action, executes further, and so on. At any time, the plans the
system is intending to execute (i.e., the selected KAs) are both
partial and hierarchical - that is, while certain general goals
have been decided upon, the specific means for achieving these
ends have been left open for future deliberation.

Figure 2: The Top-Level Strategy

mined what to do about the message - for example, to acquire
a new belief, establish a new goal, or modify intentions.

4 The Domain Knowledge

Unless some new fact or request activates some new KA, PRS
will try to fulfill any intentions it has previously decided upon.
But if some important new fact or request does become known,
PRS will reassess its goals and intentions, and then perhaps
choose to work on something else. Thus, not all options that
are considered by PRS arise as a result of means-end reasoning.
Changes in the environment may lead to changes in the system’s
beliefs, which in turn may result in the consideration of new
plans that are not means to any already intended end. PRS
is therefore able to change its focus completely and pursue new
goals when the situation warrants it. PRS can even alter its
intentions regarding its own reasoning processes - for example,
it may decide that, given the current situation, it has no time
for further reasoning and so must act immediately.

The scenario described in the introduction includes problems of
route planning, navigation to maintain the route, and such tasks
as malfunction handling and requests for information. We shall
concentrate herein on the tasks of route planning and naviga-
tion. However, it is important to realize that the knowledge
representation provided by PRS is used for reasoning about all
tasks performed by the system.

The way the robot (under the control of PRS) solves the tasks
of the space station scenario is roughly as follows. To reach a
particular destination, it knows that it must first plan a route
and then navigate to the desired location (see the KA depicted
in Figure 2). In planning the route, the robot uses knowledge
of the station’s topology to work out a path to the target loca-
tion, as is typically done in navigational tasks for autonomous

3.5 Multiple Asynchronous PRSs robots. The topological knowledge is not detailed, stating sim-
ply which rooms are in which corridors and how the latter are

In some applications, it is necessary to monitor and .process connected. The route plan formed by the robot is also high-level,

many sources of information at the same time. Because of this, typically having the following form: “Travel to the end of the

PRS was designed to allow several instantiations of the basic corridor, turn right, then go to the third room on the left.” The

system to run in parallel. Each PRS instantiation has its own robot’s knowledge of the problem domain’s topology is stored

data base, goals, and KAs, and operates asynchronously relative in its data base, while its knowledge of how to plan a route

to other PRS instantiations, communicating with them by send- is represented in various route-planning KAs. Throughout this

ing messages. The messages are written into the data base of the predictive-planning stage, the robot remains continuously reac-

receiving PRS, which must then decide what to do, if anything, tive. Thus, for example, should the robot notice indication of a

with the new information. As a rule, this decision is made by jet failure on the space station, it may well decide to interrupt

a fact-invoked KA (in the receiving PRS), which responds upon its route planning and attend instead to the task of remedying

receipt of the external message. In accordance with such factors the jet problem.

as the reliability of the sender, the type of message, and the Once a plan is formed by the route-planning KAs, that plan
beliefs, goals, and current intentions of the receiver, it is deter- must be used to guide the activities of the robot. To achieve this,

680 Robotics

we defined a group of KAs that react to the presence of a plan (in room. The last step in this KA will insert a fact into the sys-
the data base) by translating it into the appropriate sequence of tem data base of the form (current-origin $froom $fhall),
subgoals. Each leg of the origina. route plan generates subgoals where the variables are again bound to specific constants. Next,
- such as turning a corner, travelling along the hallway, and the KA in Figure 2 issues the command (! (follow-plan) 1.
updating the data base to indicate progress. The second group This activates the KA in Figure 4, which assures that each leg of
of navigational KAs reacts to these goals by actually doing the the plan is followed until the goal destination is reached. Beliefs
work of reading the sonars, interpreting the readings, counting of the form (current-origin $locale $spot> are repeatedly
doorways, aligning the robot in the hallway, and watching for updated to readjust the robot’s bearings and knowledge about
obstacles up ahead. its whereabouts.

PiOOPVI-LEFT
A third group of KAs reacts to contingencies encountered by

the robot as it interprets and follows its path. These will include
KAs that respond to the presence of an obstacle ahead or the fact

(moving 0) (speed (maxv)) (acceleration (maxa))))

to-coords B 8))

o-dg-bearing 180))

oved (9 (elbowroom) (wheelbase))))

(’ (robot-in-room Sfroom)))

n-hall Sfroom tfhall Sside Spos))

(coming-from S&de))

(current-origin Sfroom Sfhall))

that an emergency light has been seen. Such reactive KAs are
invoked solely on the basis of certain facts’ becoming known to
the robot. Implicit in their invocation, however, is an underlying
goal to “avoid obstacles” or “remain safe.”

Yet other KAs perform the various other tasks required of
the robot [7]. Metalevel KAs choose among different means of
realizing any given goal aad determine the respective priority
of tasks when mutually inconsistent goals arise (such as diag-
nosing a jet failure and fetching a wrench). Each KA manifests
a self-contained behavior, possibly including both sensory and
effector components. Many of these KAs can be simultaneously
active, performing their function whenever they may be applica-
ble. Thus, while trying to follow a path down a hallway, an ob-
stacle a.voidance procedure may simultaneously cause the robot
to veer from its original path. We elsewhere provide a more
detailed description of the KAs used by the robot [8].

c3
5 Discussion

Figure 3: Route Navigation KA

FOLLOW-PLAN

(destination Stroom Sthalt stwing))

kurrent-origin tlocaie Sspot))

tale) b Otroom Sspot))))

(? t& (=/tiall Slocale)(= ttroom &pot)))

Figure 4: Plan Interpretation KA

For example, let us consider the KAs in Figures 3 and 4. After
having used the KA in Figure 2 to plan a path, the robot acquires
the goal (! (room-left $froom) >, where the variable $froom is
bound to some particular constant representing the room that
the robot is trying to leave. The KA in Figure 3 will respond,
causing the robot to perform the steps for leaving the given

The system as described here was implemented using the new
SRI robot, Flakey, to accomplish much of the two scenarios de-
scribed in the introduction. In particular, the robot managed
to plan a path to the target room, maneuver its way out of
the room in which it was stationed, and navigate to its desti-
nation via a variety of hallways, intersections, and corners. It
maintained a.lignment in the hallways, avoided obstacles, and
stopped whenever its path was completely blocked. If it noticed
a jet malfunction on the space station (simulated by human in-
tera,ction via the keyboard), it would interrupt whatever it was
doing (route planning, naviga.ting the hallways, etc.) and at-
tend to diagnosing the problem. The diagnosis performed by the
robot was quite complex and followed actual procedures used for
NASA’s space shuttle [7].

The features of PRS that, we believe, contributed most to this
success were (1) its partial planning strategy, (2) its reactivity,
(3) its use of procedural knowledge, and (4) its metalevel (re-
flective) capabilities. The partial hierarchical planning strategy
and the reflective reasoning capabilities of PRS proved to be well
suited to the robot application, yet still allowed the system to
plan ahead when necessary. By finding and executing relevant
procedures only when sufficient information was available, the
system stood a better chance of achieving its goals under the
stringent real-time constraints of the domain. For example, the
method for determining the robot’s course was dynamically in-
fluenced by the situation, such as whether the robot was between
two hallway walls, adjacent to an open door, at a T-intersection,
or passing an unknown obstacle.

Georgeff and Lansky 681

Kurt Konolige, David Israel, and Martha Pollack. Leslie Pack
Kaelbling, Stan Rosenschein, and Dave Wilkins also provided
helpful advice and interesting comments.

References

PI

PI

PI

PI

151

PI

171

PI

PI

PO1

illI

P21

WI

1141

J. S. Albus. Brains, Behavior, and Robotics. McGraw-Hill, Pe-
terborough, New Hampshire, 1981.

R. A. Brooks. A Robust Layered Control System for a Mo-
bile Robot. Technical Report 864, Artificial Intelligence Labo-
ratory, Massachusetts Institute of Technology, Cambridge, Mas-
sachusetts, 1985.

P.R. Davis and R.T. Chien. Using and reusing partial plans. In
Proceedings of the Fifth International Joint Conference on Arta-
jicaal Intelligence, page 494, Cambridge, Massachussets, 1977.

E. H. Durfee and V. R. Lesser. Incremental planning to con-
trol a blackboard-based problem solver. In Proceedings of the
Fifth National Conference on Artificial Intelligence, pages 58-64,
Philadelphia, Pennsylvania, 1986.

R. E. Fikes and N. J. Nilsson. STRIPS: a new approach to the
application of theorem proving to problem solving. Artificial In-
telligence, 2:189-208, 1971.

M. P. Georgeff and A. L. Lansky. Procedural knowledge. Pro-
ceedings of the IEEE Special Issue on Knowledge Representation,
74:1383-1398,1986.

M. P. Georgeff and A. L. Lansky. A System for Reasoning in Dy-
namic Domains: Fault Diagnosis on the Space Shuttle. Technical
Note 375, Artificial Intelligence Center, SRI International, Menlo
Park, California, 1986.

M. P. Georgeff, A. L. Lansky, and M. Schoppers. Reasoning and
Planning in Dynamic Domains: An Experiment with a Mobile
Robot. Technical Note 380, Artificial Intelligence Center, SRI
International, Menlo Park, California, 1987.

L. P. Kaelbling. An architecture for intelligent reactive systems.
In Reasoning about Actions and Plans: Proceedings of the 1986
Workshop, Morgan Kaufmann, Los AItos, California, 1987.

N. J. Nilsson. Shakey the Robot. Technical Note 323, Artificial
Intelligence Center, SRI International, Menlo Park, California,
1984.

N. 3. Nilsson. Triangle Tables: A Proposal for a Robot Program-
ming Language. Technical Note 347, Artificial Intelligence Cen-
ter, SRI International, Menlo Park, California, 1985.

S. Vere. Planning in time: windows and durations for activities
and goals. IEEE Transactions on Pattern Analysis and Machine
Intelligence, 5(3):246-267, 1983.

D. E. Wilkins. Domain independent planning: representation and
plan generation. Artificial Intelligence, 22:269-301, 1984.

D. E. Wilkins. Recovering from execution errors in SIPE. Com-
putational Intelligence, 1:33-45, 1985.

Acknowledgments

Marcel Schoppers carried out the experiment described here.
Pierre Bessiere, Joshua Singer, and Mabry Tyson helped in
the development of PRS. Stan Reifel and Sandy Wells designed
Flakey and its interfaces, and assisted with the implementation
described herein. We have also benefited from our participa-
tion and interactions with members of CSLI’s Rational Agency
Group (RATAG), particularly Michael Bratman, Phil Cohen,

